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5 Classical 2–dimensional geometry

5.1 History

We begin with some history. Around 300 BCE, the Greek mathematician Euclid wrote his
famed treatise Elements, in which he laid the foundations for geometry as it was understood
at the time. In this treatise, he proposed five postulates which he considered to be reasonable
assumptions that must be made in order to prove anything further. Indeed, all of his
theorems were deduced from these postulates alone. The postulates are as follows.

1. A straight line segment may be drawn between any two points.

2. Any straight line segment may be extended indefinitely to form a straight line.

3. Given any straight line segment, a circle may be drawn with the line segment as its
radius and one of the endpoints as its centre.
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4. All right angles are congruent (that is, there is an isometry taking one to the other).

5. Given a line L and a point P not on L, there is a unique line through P that does not
intersect L.1

The geometry that is based on these postulates is known as Euclidean geometry ; this is
the geometry that most of us know from our childhood education, and indeed for roughly
1500 years the vast majority of mathematicians worked only with Euclidean geometry. The
Euclidean plane is typically denoted E2.

One may notice that the fifth postulate (also known as the parallel postulate), seems
more complicated than the others and less of an obvious “fact”. Indeed, in about 100
AD, Menelaus showed in his treatise Sphaerica that one can construct a different geometry,
known as spherical geometry, by replacing the parallel postulate with the following.

5’. Given a line L and a point P not on L, all lines through P must intersect L.

As the name would suggest, spherical geometry is performed on the surface of a sphere,
denoted S2. Note that in non-Euclidean geometries, a “line” is taken to mean a geodesic;
that is, a path of shortest length connecting two points. In spherical geometry, geodesics
are arcs of circles obtained by taking the intersection of the sphere in R3 (centred at the
origin) with a plane passing through the origin.

P

L

Figure 1: Illustration of 5’.

Around 1820, Nikolai Lobachevsky showed that a third geometry, known as hyperbolic
geometry, can be constructed by replacing the parallel postulate with the following.

5”. Given a line L and a point P not on L, there are infinitely many lines through P that
do not intersect L.

In 1907, Henri Poincaré finally put this to rest by conclusively proving that Euclidean,
spherical, and hyperbolic geometry are the only possible 2–dimensional geometries2. (In
three dimensions and higher, the picture is more complicated.) We study classical 2–
dimensional hyperbolic geometry in more detail in the next section.

1Euclid originally stated the fifth postulate in a slightly different, but equivalent, form. This version is
due to John Playfair in 1795.

2This is a simplified statement of a result in complex analysis known as the Uniformisation Theorem.
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5.2 The hyperbolic plane H2

There are many ways of modelling 2–dimensional hyperbolic geometry (known as the hy-
perbolic plane and denoted H2). We focus on the Poincaré disc model.

Definition 5.1 (Poincaré disc model). Let D “ tz P C | |z| ă 1u. A hyperbolic line is
a diameter of D or an arc of a Euclidean circle contained in D that is orthogonal to the
boundary BD “ tz P C | |z| “ 1u.

Given z, w P D, let γ be the unique hyperbolic line passing through z and w. Let z1 and
w1 be the intersection points of γ with BD that are closest to z and w, respectively. Define

dDpz, wq “ ln

ˆ

|z1 ´ w| ¨ |w1 ´ z|

|z1 ´ z| ¨ |w1 ´ w|

˙

.

We call D equipped with the metric dD the Poincaré disc model of the hyperbolic plane;
we write H2 “ pD, dDq.

z
w

z1

w1L

P

Figure 2: Illustration depicting 5” and the points z1 and w1.

Exercise 5.2. Verify that dD defines a metric on D.

Exercise 5.3. Show that dDp0, zq “ ln
´

1`|z|

1´|z|

¯

.

Note that as z or w approaches the boundary BD, the value of |z ´ z1| or |w ´ w1|

approaches 0, thus dDpz, wq tends to infinity. Hence, in order to reach BD, one must travel
an infinite distance. For this reason, BD is often referred to as the ideal boundary, since in
reality it is not bounding the space in the traditional sense. This is also why lines in H2 arise
as arcs of circles orthogonal to BD – since distances blow up to infinity as one approaches
the boundary, it is more efficient to move a little towards the centre of D as one travels
between two points in H2.

To study the geometry of H2 in greater detail, we need to identify what isometries
look like. We first define a natural collection of maps of the complex plane, called Möbius
transformations.

Definition 5.4 (Möbius transformation). A Möbius transformation is a map f : CYt8u Ñ

C Y t8u of the form fpzq “ az`b
cz`d , where a, b, c, d P C are constants such that ad ´ bc ‰ 0.

Here we define fp8q “ a
c and fp´d

c q “ 8.

Möbius transformations have many useful properties, as described below.
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Proposition 5.5 (Properties of Möbius transformations). Let fpzq “ az`b
cz`d be a Möbius

transformation.

1. It is always possible to rewrite f so that ad ´ bc “ 1 (this is called normalising a
Möbius transformation).

2. There is a unique Möbius transformation taking any three distinct points of C Y t8u

to any other three distinct points.

3. Euclidean circles in C Y t8u are sent by f to Euclidean circles, where we consider a
straight line together with the point 8 to be a “circle”.

4. fpDq “ D if and only if d “ ā and c “ b̄ (recall z̄ denotes the complex conjugate of
z).

5. For all z, w P D there is some f with d “ ā and c “ b̄ sending z to w.

6. If d “ ā and c “ b̄ then f restricts to an isometry of H2.

Proof. We shall prove parts 1 and 2 and leave the remainder as an exercise.

1. Since ad´bc ‰ 0, we may divide both the numerator and denominator by
?
ad ´ bc to

give fpzq “ a1z`b1

c1z`d1 where a1 “ a?
ad´bc

, b1 “ b?
ad´bc

, c1 “ c?
ad´bc

, d1 “ d?
ad´bc

. Thus,

a1d1 ´ b1c1 “ ad´bc
ad´bc “ 1.

2. First note that Möbius transformations are invertible, and moreover the inverse is
another Möbius transformation: if fpzq “ az`b

cz`d , then f´1pzq “ b´dz
cz´a . Furthermore,

it is easy to show the composition of two Möbius transformations is a Möbius trans-
formation. It is therefore sufficient to show that for any p, q, r P C Y t8u, there is a
unique fpzq “ az`b

cz`d such that fp0q “ p, fp1q “ q, fp8q “ r. This is because for any
p1, q1, r1 P CY t8u we can then find a unique gpzq with gp0q “ p1, gp1q “ q1, gp8q “ r1,
hence g´1 ˝f is the unique Möbius transformation sending p to p1, q to q1, and r to r1.

Note that fp0q “ p implies b “ pd and fp8q “ r implies a “ rc. Thus, fpzq is uniquely
determined by p, d, r, c. Furthermore, fp1q “ q implies qc ` qd “ a ` b “ rc ` pd,

so c “
dpp´qq

q´r . So fpzq is uniquely determined by p, q, r, d. Finally, we can assume

ad ´ bc “ 1, so d “ 1`bc
a “

1`pd
r , thus d “ 1

r´p . Hence, fpzq is uniquely determined
by p, q, r, as required.

Exercise 5.6. (Hard) Prove the rest of Proposition 5.5. Conclude that Möbius transfor-
mations of the form fpzq “ az`b

b̄z`ā
are isometries of H2.

Properties (5) and (6) show that H2 is homogeneous (it looks the same everywhere)
and isotropic (it looks the same in every direction), which are also true of E2 and S2.
Isotropy follows by considering rotations about the origin, which are Möbius transformations
preserving D. We also have:

Fact 5.7. Möbius transformations are continuous and conformal (angle-preserving).

We are able to use Proposition 5.5 to identify the bi-infinite geodesics of H2.

Proposition 5.8. Bi-infinite geodesics in H2 are diameters of D or arcs of Euclidean circles
orthogonal to BD.
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Proof. We first show that the interval p´1, 1q on the real axis is a bi-infinite geodesic in H2.
Let w “ 0 and let z “ x be some distinct point on p´1, 1q. Thus, in Definition 5.1 we have
w1 “ ˘1 and z1 “ ¯1, corresponding to whether x is in p´1, 0q or p0, 1q, respectively. Hence

dDpz, wq “ ln

ˆ

| ¯ 1 ´ 0| ¨ | ˘ 1 ´ x|

| ¯ 1 ´ x| ¨ | ˘ 1 ´ 0|

˙

“ ln

ˆ

1 ¯ x

1 ˘ x

˙

“

ˇ

ˇ

ˇ

ˇ

ln

ˆ

1 ` x

1 ´ x

˙
ˇ

ˇ

ˇ

ˇ

.

Note that as x varies from ´1 to 1, gpxq :“ lnp 1`x
1´x q varies continuously from ´8 to 8.

Thus, we may define a continuous bijective map γ : R Ñ p´1, 1q by taking γpyq “ ey´1
ey`1 ,

noting that γpyq “ g´1pyq. This shows that p´1, 1q is a bi-infinite geodesic in H2.
Note that any pair of distinct points on BD determines a unique Euclidean circle C in

C Y t8u orthogonal to BD. Furthermore, Möbius transformations are conformal, i.e. they
preserve angles. Thus, by taking a third point on the arc of C inside D, Proposition 5.5
(2),(3) gives us a Möbius transformation f taking p´1, 1q to C X D, which must also take
BD to BD by conformality. Proposition 5.5 (4),(6) then implies f restricts to an isometry of
H2. Thus, all diameters of D and arcs of Euclidean circles orthogonal to BD are bi-infinite
geodesics of H2. Furthermore, since all pairs of points of D lie on such a circle, we see that
all bi-infinite geodesics are of this form.

Exercise 5.9. Let α : r0, Ls Ñ D be a smooth path. The length of α in H2 is given by

lDpαq “

ż L

0

2|α1ptq|

1 ´ |αptq|2
dt.

Show that the length of a circle of radius r in H2 is 2π sinh r. Conclude that distances in
H2 grow exponentially as you move further from the origin.

5.3 Tessellations

One can readily see that angles in S2 are strictly larger than in E2, while angles in H2 are
strictly smaller than E2 (we define the angle between two geodesics in S2 or H2 by taking
tangent lines at the intersection point of the geodesics and measuring the Euclidean angle
between the tangents). For example, this can be seen by considering geodesic triangles in
E2, S2, and H2.

Figure 3: Geodesic triangles in E2, S2, and H2.

In E2, the sum of the angles in a triangle must equal 180 degrees, or π radians. However,
in S2 the sum is always strictly larger than π, and in H2 the sum is always strictly smaller
than π. In fact, one can observe that as the vertices of a triangle in H2 approach BD, the
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sum of the angles approaches 0. This follows from the fact that geodesics in H2 meet BD
at right angles, meaning if two geodesics meet BD at the same point, their tangent lines are
equal. A triangle with all its vertices on BD is called an ideal triangle.

Figure 4: An ideal triangle.

Exercise 5.10. Show that the centre of an ideal triangle in H2 is at distance 1
2 lnp3q from

each of its three sides.

This can be generalised to hyperbolic n–gons. In fact, we have something stronger.

Proposition 5.11. Let n P Ně3. Recall that the angles of a Euclidean n–gon are equal to
p1 ´ 2

n qπ. For all 0 ă θ ă p1 ´ 2
n qπ, there is a regular hyperbolic n–gon with angles equal to

θ.

Proof. Take a regular hyperbolic n–gon centred at the origin in D. Pushing all the vertices
out to BD at the same rate, the angles of the n–gon decrease continuously to 0. Conversely,
if the vertices are all pushed towards the origin at the same rate, the hyperbolic n–gon
approaches a Euclidean n–gon, thus the angles increase continuously to p1 ´ 2

n qπ. The
intermediate value theorem thus implies that there is a hyperbolic n–gon with angles θ for
each 0 ă θ ă p1 ´ 2

n qπ.

We can use this result to show that every regular polygon tessellates either S2, E2, or
H2. In fact, the vast majority of tessellations occur in H2.

Theorem 5.12. Let m,n P Ně3.

• If 1
m ` 1

n ą 1
2 , there is a tessellation of S2 by regular n–gons such that m such n–

gons meet at each vertex. There are five such tessellations, corresponding to pm,nq “

p3, 3q, p3, 4q, p3, 5q, p4, 3q, p5, 3q.

• If 1
m ` 1

n “ 1
2 , there is a tessellation of E2 by regular n–gons such that m such n–gons

meet at each vertex. There are three such tessellations, corresponding to pm,nq “

p3, 6q, p4, 4q, p6, 3q.

• If 1
m ` 1

n ă 1
2 , there is a tessellation of H2 by regular n–gons such that m such n–gons

meet at each vertex. There are infinitely many such tessellations, corresponding to all
pairs pm,nq other than those listed above.

Proof. In order for a tessellation by regular n–gons to exist with m such n–gons around each
vertex, the interior angles of the n–gons must be θ “ 2π

m , so that the angles around each
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vertex add up to 2π. Furthermore, notice that the inequalities 1
m ` 1

n ą 1
2 ,

1
m ` 1

n “ 1
2 , and

1
m ` 1

n ă 1
2 are equivalent to 2π

m ą p1´ 2
n qπ, 2π

m “ p1´ 2
n qπ, and 2π

m ă p1´ 2
n qπ. Thus, these

three inequalities correspond to the interior angles of the n–gons being larger than that of a
Euclidean n–gon, equal to that of a Euclidean n–gon, and smaller than that of a Euclidean
n–gon, respectively. Thus, a regular tessellation satisfying one of these three inequalities (if
it exists) must be a tessellation of S2, E2, or H2, respectively.

There are only five pairs of integers pm,nq with m,n ě 3 that satisfy the inequality
1
m ` 1

n ą 1
2 , namely pm,nq “ p3, 3q, p3, 4q, p3, 5q, p4, 3q, p5, 3q. These give tessellations of S2

corresponding to the five platonic solids: the tetrahedron, octahedron, icosahedron, cube,
and dodecahedron, respectively. (The platonic solids can be seen as tessellations of S2 by
bending the faces so they lie on the surface of S2.)

Similarly, there are only three pairs of integers pm,nq withm,n ě 3 satisfying 1
m ` 1

n “ 1
2 ,

namely pm,nq “ p3, 6q, p4, 4q, p6, 3q, corresponding to regular tilings of E2 by triangles,
squares, and hexagons, respectively.

On the other hand, there are infinitely many solutions to 1
m ` 1

n ă 1
2 . Recall that this

inequality corresponds to 0 ă θ ă p1 ´ 2
n qπ, where θ “ 2π

m . Proposition 5.11 now tells us
there is a tessellation of H2 for each such pair pm,nq; we can see this by constructing a
regular n–gon centred at the origin in H2 with interior angles θ “ 2π

m and reflecting the
polygon in its edges to produce a tessellation.

6 Surface groups

In this section we introduce an important class of groups, called surface groups. Throughout
this section we shall use the notation rg, hs “ ghg´1h´1 to denote the commutator of two
elements g, h in a group G.

Definition 6.1 (Surface group). Let g ě 1. The surface group of genus g, denoted π1pSgq,
is the group with the following presentation:

π1pSgq “ xa1, b1, . . . , ag, bg | ra1, b1s ¨ ra2, b2s ¨ . . . ¨ rag, bgs “ 1y.

Remark 6.2. These groups appear in topology as the fundamental groups of closed ori-
entable surfaces, however we shall not study them from this point of view in this course.

We see that if g “ 1, then π1pSgq is quasi-isometric to E2, while for all g ě 2, the surface
group π1pSgq is quasi-isometric to H2. Thus, almost all surfaces have hyperbolic geometry.

Theorem 6.3. The Cayley graph of π1pSgq is quasi-isometric to E2 if g “ 1, and quasi-
isometric to H2 if g ě 2.

Proof. Consider the Cayley graph of π1pSgq with respect to the generating set given in the
definition. Denote this Cayley graph by ∆pπ1pSgqq. Recall that cycles in the Cayley graph
of a group correspond to words w in the generators with w “ 1. In particular, the relator
ra1, b1s ¨ . . . ¨ rag, bgs “ 1 gives cycles of length 4g in ∆pπ1pSgqq; see Figure 5. Moreover, since
the presentation of π1pSgq has only one relator, ∆pπ1pSgqq can be constructed entirely by
gluing cycles of length 4g of the form shown in Figure 5 to each other along edges with the
same label.

Furthermore, each vertex of ∆pπ1pSgqq has valence 4g, with one edge coming out of it
for each of the 2g generators and their inverses. Thus, by assigning angles of 2π

4g “ π
2g to
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a1

b1

a´1
1

b´1
1

a1

b1

a´1
1

b´1
1

a2

a´1
2

b2

b´1
2

Figure 5: The cycles of length 4g for g “ 1 and g “ 2.

∆pπ1pSgqq and applying Theorem 5.12, we can realise ∆pπ1pSgqq as a tessellation by regular
4g–gons with 4g such polygons around each vertex. If g “ 1, this gives a tessellation of
E2 by squares. If g ě 2, this gives a tessellation of H2. That is, there is an embedding
i : ∆pπ1pSgqq Ñ E2 if g “ 1 and i : ∆pπ1pSgqq Ñ H2 if g ě 2.

Figure 6: Tessellations of E2 by squares and H2 by octagons.

Since we have a regular tessellation, the edges of each polygon have the same finite length
L, thus i is an pL, 0q–quasi-isometric embedding. Furthermore, each polygon has the same
finite area A, so H2 (or E2 if g “ 1) is contained in a finite neighbourhood of ∆pπ1pSgqq.
Thus, i is a quasi-isometry.

The groups π1pSgq are called surface groups because if we take the quotient of H2 (or
E2 if g “ 1) by the action of π1pSgq by translation, we get a surface, obtained by gluing
edges of the 4g–gon labelled by the same letter; see Figure 7 below. By considering this
action on H2 (or E2) and applying the Milnor-Schwarz lemma, we obtain an alternate proof
of Theorem 6.3.

Exercise 6.4. Prove Theorem 6.3 using the Milnor–Schwarz lemma.

Exercise 6.5. The non-orientable surface group of genus g is defined as

π1pNgq “ xc1, . . . , cg | c21c
2
2 . . . c

2
g “ 1y.

1. Show that π1pS1q embeds as an index 2 subgroup of π1pN2q. Conclude that π1pN2q is
quasi-isometric to π1pS1q.

2. (Very hard) Show that π1pSg´1q embeds as an index 2 subgroup of π1pNgq. Conclude
that π1pNgq is quasi-isometric to π1pSg´1q.
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a1

b1

a1

b1 b1b1

Figure 7: A torus is obtained from the square when the edges labelled by a1 are glued to
each other and the edges labelled by b1 are glued to each other.

7 Hyperbolic metric spaces

The goal of this section is to define what it means for a general metric space to be hyperbolic,
and show that this property is invariant under quasi-isometry. This will then give us a well-
defined notion of a hyperbolic group. This form of hyperbolicity is often called “Gromov
hyperbolicity”, as it was originally developed by Mikhail Gromov in the 1980s.

7.1 Definition of δ–hyperbolicity

As we shall see throughout this course, there are a number of equivalent ways to define a
hyperbolic metric space. Some of them are applicable to any metric space pX, dq, however
for simplicity we shall always assume pX, dq is a geodesic metric space; that is, for any two
points of X there exists a geodesic between them. This is a natural assumption to make, as
our eventual goal is to apply this to Cayley graphs, which are always geodesic metric spaces.

By assuming pX, dq is a geodesic metric space, we can define triangles in pX, dq:

Definition 7.1. A geodesic triangle T in pX, dq consists of three points x, y, z P X together
with three geodesic segments α, β, γ (one joining each pair of points). We call the three
geodesic segments the sides of T . We often refer to a geodesic triangle by the geodesic
segments it consists of, writing T “ pα, β, γq.

Definition 7.2. Let δ ě 0 and let T “ pα, β, γq be a geodesic triangle in pX, dq. A point
p P X is said to be a δ–centre of T if maxtdpp, αq, dpp, βq, dpp, γqu ď δ.

Definition 7.3. We say X is δ–hyperbolic if every geodesic triangle in X has a δ–centre.
We say X is hyperbolic if there exists some δ ě 0 such that X is δ–hyperbolic. We call δ
the hyperbolicity constant.

Notice that the presence of a δ–centre causes triangles in δ–hyperbolic metric spaces to
have the same pinched-in appearance of triangles in H2. See Figure 8.

Warning 7.4. It is important that the same δ works for all geodesic triangles. If we were
allowed to pick different values of δ for each triangle, then we could always just make δ
larger than the diameter of the triangle, making our definition useless!

9



p

ď δ
ď δ

ď δ

Figure 8: A δ–centre p of a geodesic triangle.

Example 7.5. We list a few basic examples and non-examples of hyperbolic metric spaces.

1. If a metric space has finite diameter d then it is d–hyperbolic.

2. Trees are 0–hyperbolic.

3. H2 is p 1
2 ln 3q–hyperbolic.

4. E2 is not hyperbolic.

x

y

z

p

n

n

p1 ´ 1?
2

qn

Figure 9: Triangles in trees always look like tripods, and the centre of the tripod is a 0–
centre. For E2, a right-angled triangle with non-hypotenuse sides of length n has at best a
p1 ´ 1?

2
qn–centre, so no constant δ works for all geodesic triangles.

Exercise 7.6. Prove that H2 is p 1
2 ln 3q–hyperbolic:

1. Show that any triple of points p, q, r P BD is taken to any other triple of points
p1, q1, r1 P BD by an isometry of H2. Conclude that all ideal triangles are isometric.

2. Let T be an ideal triangle with its vertices equally spaced along BD. Show that T has
a p 1

2 ln 3q–centre.

3. Show that any triangle in H2 is contained in an ideal triangle. Conclude that every
triangle has a p 1

2 ln 3q–centre, and hence H2 is p 1
2 ln 3q–hyperbolic.

10



7.2 Geodesics in hyperbolic metric spaces

A useful tool in hyperbolic geometry is the Gromov product, defined as follows.

Definition 7.7 (Gromov product). Let pX, dq be a δ–hyperbolic metric space. The Gromov
product of three points x, y, z P X is

xx, yyz “
1

2
pdpx, zq ` dpy, zq ´ dpx, yqq.

Exercise 7.8. Use the triangle inequality to show that the Gromov product is always
non-negative.

In a hyperbolic metric space X, one can think of the Gromov product as a rough measure
of how close the point z is to a geodesic between the points x and y. Indeed, if X is a tree,
then every geodesic triangle with vertices x, y, z looks like a tripod, as shown in Figure 9.
Denote the centre point of the tripod by p.

One can then see that the geodesic connecting x to z overlaps with the geodesic con-
necting y to z along the subpath from p to z. Thus,

xx, yyz “
1

2
pdpx, zq ` dpy, zq ´ dpx, yqq

“
1

2
pdpx, pq ` dpp, zq ` dpy, pq ` dpp, zq ´ dpx, pq ´ dpp, yqq

“ dpp, zq,

which is precisely the distance from z to the geodesic from x to y. In general, we have
something slightly weaker:

Lemma 7.9. If α is a geodesic from x to y, then dpz, αq ě xx, yyz.

Proof. Let a be a point on α. Then by the triangle inequality,

dpx, yq “ dpx, aq ` dpa, yq

dpx, zq ď dpx, aq ` dpa, zq

dpy, zq ď dpy, aq ` dpa, zq.

Putting these into the formula for the Gromov product, we get xx, yyz ď dpa, zq.

In fact, we also have an inequality in the other direction:

Lemma 7.10. Let x, y, z P X, and let α be a geodesic from x to y. Then dpz, αq ď

xx, yyz ` 4δ.

Proof. Let T “ pα, β, γq be a triangle with vertices x, y, z, so that α connects x and y, β
connects x and z, and γ connects z and y. Since X is δ–hyperbolic, T has a δ–centre p.
Thus, there is a point a on α such that dpa, pq ď δ. Thus, by the triangle inequality, a is a
2δ–centre for T . That is, there is a point q on β at most 2δ from a, and there is a point r
on γ at most 2δ from a. See Figure 10. In particular, by the triangle inequality we have

dpx, aq ` dpz, aq ď dpx, qq ` 2δ ` dpz, qq ` 2δ “ dpx, zq ` 4δ

dpy, aq ` dpz, aq ď dpy, rq ` 2δ ` dpz, rq ` 2δ “ dpy, zq ` 4δ

dpx, aq ` dpy, aq “ dpx, yq.

Add the first two inequalities and subtract the third to give 2dpz, aq ď 2xx, yyz ` 8δ, i.e.
dpz, aq ď xx, yyz ` 4δ, as required.

11
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Figure 10: Illustration of Lemma 7.10.

Putting these two lemmas together, we see that xx, yyz ď dpz, αq ď xx, yyz ` 4δ. Thus,
the Gromov product xx, yyz is equal to the distance from z to a geodesic α connecting x and
y, up to an error of 4δ. Another way of saying this is that they are equal up to applying a
p0, 4δq–quasi-isometry.

We can use this to show that in a hyperbolic space, any two geodesics with the same
endpoints travel alongside each other at a bounded distance.

Corollary 7.11. Let α and β be two geodesics connecting the same pair of points. Then α
is contained in the 4δ–neighbourhood of β and vice versa.

Proof. Denote the endpoints by x and y, and let z be a point on α. Then xx, yyz ď dpz, αq “

0 by Lemma 7.9, so dpz, βq ď xx, yyz ` 4δ “ 4δ by Lemma 7.10. Similarly, if we take z1 to
be a point on β then we obtain dpz1, αq ď 4δ.

7.3 The slim triangles definition

In this section, we give a different but equivalent definition of δ–hyperbolicity that is com-
monly used in the literature.

Notation 7.12. If α is a path and a, b are two points on α, then we write αra, bs to denote
the subpath of α between a and b.

Definition 7.13 (Taut). Let α be a path with endpoints x, y. We say α is t–taut if
lengthpαq ď dpx, yq ` t.

Tautness measures how close a path is to being a geodesic. In particular, 0–taut paths
are geodesics.

Exercise 7.14. Show that any subpath of a t–taut path is t–taut.

We see that Corollary 7.11 can be generalised to t–taut paths, with the caveat that the
bound on the distance between the paths depends on t.
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Lemma 7.15. Let α be a geodesic and let β be a t–taut path with the same endpoints as α.

1. β is contained in the p 1
2 t ` 4δq–neighbourhood of α.

2. α is contained in the pt ` 8δq–neighbourhood of β.

Proof. Let x, y denote the endpoints of α and β.

1. Let z be a point on β. Then

xx, yyz “
1

2
pdpx, zq ` dpy, zq ´ dpx, yqq ď

1

2
plengthpβq ´ dpx, yqq ď

1

2
t

by t–tautness of β. Thus, by Lemma 7.10, dpz, αq ď 1
2 t ` 4δ.

2. Let w be a point on α, and let Ax and Ay denote the p 1
2 t ` 4δq–neighbourhoods of

αrx,ws and αrw, ys, respectively. By part (1), β Ď Ax Y Ay. In particular, since β
is connected and contains points of both Ax and Ay, it follows that Ax and Ay must
intersect in some point z on β. Thus, there are some points ax on αrx,ws and ay
on αrw, ys such that dpz, axq ď 1

2 t ` 4δ and dpz, ayq ď 1
2 t ` 4δ. Thus, dpax, ayq ď

dpax, zq ` dpz, ayq ď t ` 8δ by the triangle inequality. Since w lies on αrax, ays, it
follows that either dpw, axq ď 1

2 t` 4δ or dpw, ayq ď 1
2 t` 4δ. Since ax and ay are both

distance at most 1
2 t ` 4δ from z, it follows that dpw, βq ď t ` 8δ, as required.

We are now ready to set up our alternate definition of δ–hyperbolicity, which is stated
in terms of slim triangles.

Definition 7.16 (Slim). We say a triangle T “ pα, β, γq is δ–slim if each side is contained
in the δ–neighbourhood of the union of the other two sides.

Theorem 7.17. If a geodesic triangle has a δ–centre, then it is 6δ–slim. Conversely, if a
geodesic triangle is δ1–slim, then it has a δ1–centre.

Proof. Let T “ pα, β, γq be a geodesic triangle and let x, y, z be the vertices of T , where
x, y are the endpoints of α, y, z are the endpoints of β, and z, x are the endpoints of γ.
Suppose T has a δ–centre p. Then there are some points a, b, c on α, β, γ respectively
such that dpa, pq ď δ, dpb, pq ď δ, dpc, pq ď δ. Let ξ be a geodesic from a to z. Then
lengthpξq ď 2δ ` dpc, zq and lengthpαra, xsq ď 2δ ` dpc, xq. Because c lies on the geodesic
γ from x to z, we therefore have lengthpξ Y αra, xsq ď dpx, zq ` 4δ, so the path ξ Y αra, xs

is 4δ–taut. By Lemma 7.15, αra, xs Ď ξ Y αra, xs is contained in the 6δ–neighbourhood of
γ. Similarly, αra, ys is contained in the 6δ–neighbourhood of β. Thus, α is contained in the
6δ–neighbourhood of β Y γ. The proofs for the other two sides proceed similarly, showing
that T is 6δ–slim.

Conversely, suppose T is δ1–slim. Then α is contained in the δ1–neighbourhood of β Y γ.
Let Aβ and Aγ denote the δ1–neighbourhoods of β and γ, respectively, so that α Ď Aβ YAγ .
Since α is connected and contains points of both Aβ and Aγ , it follows that Aβ and Aγ

must intersect in some point p on α. Thus, dpp, αq “ 0, dpp, βq ď δ1, dpp, γq ď δ1, and so p
is a δ1–centre of T .

Thus, we have the following equivalent definition of δ–hyperbolicity. Be careful to state
which definition you are using, because as we saw in the above theorem, the constants
involved may differ by a factor of 6 depending which definition is used.

13



Definition 7.18 (Slim triangles definition). A geodesic metric space X is said to be δ1–
hyperbolic if all geodesic triangles are δ1–slim.

Exercise 7.19. We say that a geodesic n–gon P “ pα1, . . . , αnq is δ1–slim if each side is
contained in the δ1–neighbourhood of the union of the other n´1 sides. Use the slim triangles
definition to show that every geodesic n–gon in a δ1–hyperbolic space X is pn ´ 2qδ1–slim.

7.4 Exponential growth

We show that δ–hyperbolic spaces exhibit exponential growth in a similar way to H2 (cf.
Exercise 5.9). That is to say, distances grow exponentially as you move further away from
a fixed point.

Proposition 7.20. Let X be a δ–hyperbolic space, and let α be a path between two points
p, q P X. If γ is a geodesic between p and q, then for every point x on γ,

dpx, αq ď δ| log2plengthpαqq| ` 2.

Proof. Let n P Z such that 2n ď lengthpαq ď 2n`1 and subdivide α into 2n segments of
length 1

2n lengthpαq. Use this subdivision to construct geodesic triangles as in Figure 11.
Then, using the slim triangles definition of δ–hyperbolicity, we can construct a path from
x to a point y on α via points y1, . . . , yn on the geodesic triangles as shown in Figure
11, where dpx, y1q ď δ and dpyi, yi`1q ď δ for all i. Furthermore, dpyn, yq ď 2 because
dpyn, yq ď 1

2n lengthpαq ď 2. Thus, dpx, αq ď nδ ` 2 ď δ| log2plengthpαqq| ` 2.

p q

α

γ
x

y1

y2y3

y

Figure 11: Illustration of Proposition 7.20.

Fix a point p P X. Write Spp, rq “ tx P X | dpp, xq “ ru, Bpp, rq “ tx P X | dpp, xq ď ru,
and B̊pp, rq “ tx P X | dpp, xq ă ru. We see that the lengths of paths in X connecting two
points x, y P Spp, rq and avoiding B̊pp, rq grows exponentially with dpx, yq, and thus with r.

Proposition 7.21. Let α be a path in X ∖ B̊pp, rq connecting x, y P Spp, rq. Then

lengthpαq ě 2
dpx,yq´8δ´4

2δ ´ 1.

Proof. Suppose δ “ 0. Then no such paths α exist, thus the result holds vacuously. We
may therefore assume δ ą 0 without loss of generality.
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Suppose lengthpαq ď 1. Then dpx, yq ď 1, so 2
dpx,yq´8δ´4

2δ ´ 1 ă 0. Thus, the inequality
holds trivially.

Now suppose lengthpαq ą 1. Let γ be a geodesic connecting x and y. By Proposition

7.20, lengthpαq ě 2
dpz,αq´2

δ for any point z on γ. By Lemma 7.10, we have

dpp, γq ď xx, yyp ` 4δ

“
1

2
pdpx, pq ` dpy, pq ´ dpx, yqq ` 4δ

“ r ´
1

2
dpx, yq ` 4δ.

Thus, there exists some point z on γ with dpp, zq ď r ´ 1
2dpx, yq ` 4δ. Suppose dpx, yq ą 8δ,

so that γ Ď Bpp, rq. Since α avoids B̊pp, rq, we have dpz, αq ě r ´ dpz, pq ě 1
2dpx, yq ´ 4δ.

Thus,

lengthpαq ě 2
dpx,yq´8δ´4

2δ .

On the other hand, if dpx, yq ď 8δ, then 2
dpx,yq´8δ´4

2δ ă 1 ă lengthpαq.

p

x

y

r

α

Figure 12: Illustration of Proposition 7.21.

7.5 Quasi-geodesics

In geometric group theory, we are interested in properties that are invariant under quasi-
isometry. Notice that geodesics may no longer be geodesics once a quasi-isometry has been
applied! We therefore introduce the notion of a quasi-geodesic. This gives us a useful class
of paths that behave nicely in hyperbolic spaces.

Definition 7.22 (Quasi-geodesic). An pA,Bq–quasi-geodesic in a metric space X is an
pA,Bq–quasi-isometric embedding γ : I Ñ X, where I is a (possibly unbounded) interval of
R. We say γ : I Ñ X is a quasi-geodesic if it is an pA,Bq–quasi-geodesic for some A,B.

We often abuse notation by using the term quasi-geodesic when we really mean its image
as a subset of X.
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Remark 7.23. Note that an pA,Bq–quasi-geodesic γ : I Ñ X is not necessarily connected,
since two points that are next to each other in I may be sent to points in X that are
up to a distance B from each other. In particular, γ is not necessarily a path. However,
it is always possible to turn γ into a path γ1 by connecting the endpoints of consecutive
connected components of γ with geodesic segments. Furthermore, γ1 is contained in the
B–neighbourhood of γ and in particular is itself an pA,Bq–quasi-geodesic.

Note that by composing a quasi-geodesic path γ with an appropriate rescaling map from
R to R, we may assume that for all t1, t2 P I, we have lengthpγprt1, t2sqq “ |t1 ´ t2|. Working
under this assumption, we therefore have:

Proposition 7.24. Let γ be an pA,Bq–quasi-geodesic path. Then for all points x, y on γ,

lengthpγrx, ysq ď Adpx, yq ` B.

If X is δ–hyperbolic, then the following result tells us that quasi-geodesics always travel
close to geodesics.

Lemma 7.25 (Morse Lemma). Let α be a geodesic in a δ–hyperbolic space X and let β
be an pA,Bq–quasi-geodesic with the same endpoints as α. Then there exists some R ě 0,
depending only on A,B, δ, such that β is contained in the R–neighbourhood of α and vice
versa.

Proof. Let a, b denote the endpoints of α, and let p be the point on α furthest from β.
Let t “ dpp, βq. In particular, dpp, aq ě t. There is therefore a point a0 on αra, ps with
dpp, a0q “ t. Define a1 to be the point on αra, ps with dpp, a1q “ 2t, if it exists. If such a
point does not exist, define a1 “ a. By definition of p, we must have dpa1, βq ď t. Thus,
there is some point a2 on β with dpa1, a2q ď t. If a1 “ a, set a2 “ a too. Define points
b0, b1, b2 similarly by considering αrp, bs instead. See Figure 13 for an illustration.

pa0a1a

a2

b0 b1

b2

b

t

ď t ď t

tt t t

Figure 13: Illustration of the proof of the Morse Lemma.

Let β1 be the pA,Bq–quasi-geodesic path corresponding to β, as constructed in Remark
7.23. Let γ “ αra0, a1s Y ra1, a2s Y β1ra2, b2s Y rb2, b1s Y αrb1, b0s. Note that dpa2, b2q ď 6t
by the triangle inequality, so by applying Proposition 7.24 to β1, we have

lengthpβ1ra2, b2sq ď Adpa2, b2q ` B

ď 6At ` B,

lengthpγq ď 4t ` lengthpβ1ra2, b2sq

ď p6A ` 4qt ` B.
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Note that by construction γ X B̊pp, tq “ H, and a0, b0 P Spp, tq. Thus, by Proposition 7.21,
we have

lengthpγq ě 2
2t´8δ´4

2δ ´ 1 “ 2
t´4δ´2

δ ´ 1.

Putting these together, we have

2
t´4δ´2

δ ď p6A ` 4qt ` B ` 1.

This gives an upper bound R on t that depends only on A,B, δ. By definition of t, we have
shown that α is contained in the R–neighbourhood of β.

Now let q be a point on β and let Ba and Bb denote the R–neighbourhoods of βra, qs

and βrq, bs, respectively. We know that α Ď Ba YBb. In particular, since α is connected and
contains points of both Ba and Bb, it follows that Ba and Bb must intersect in some point
x on α. Thus, there are some points ya on βra, qs and yb on βrq, bs such that dpx, yaq ď R
and dpx, ybq ď R. Thus, dpya, ybq ď 2R by the triangle inequality. Since q lies on βrya, ybs,
it follows that either dpq, yaq ď R or dpq, ybq ď R. Since ya and yb are both distance at most
R from x, it follows that dpq, αq ď 2R. Thus, β is contained in the 2R–neighbourhood of α,
as required.

Exercise 7.26. (a) Show that the logarithmic spiral γ : p0,8q Ñ E2 given by

γptq “ pt cospln tq, t sinpln tqq

is a quasi-geodesic. (Hint: to get the upper bound, use the mean value theorem.)
(b) Show that the logarithmic spiral γ does not satisfy the Morse Lemma; that is, show

there is no R ě 0 such that for all subsegments γra, bs, the geodesic α in E2 with endpoints
a, b is contained in the R–neighbourhood of γra, bs and vice versa. This provides another
proof that E2 is not hyperbolic.

We can use the Morse Lemma to show that the definition of hyperbolicity could equally
well have been formulated in terms of pA,Bq–quasi-geodesic triangles.

Lemma 7.27. Any pA,Bq–quasi-geodesic triangle T “ pα, β, γq has a δ1–centre, where δ1

depends only on A,B, δ.

Proof. Let T 1 “ pα1, β1, γ1q be a geodesic triangle with the same vertices as T . Then T 1 has
a δ–centre p. Applying Lemma 7.25, we see that the distance from p to α, β, and γ is at
most δ ` R. Thus, p is a pδ ` Rq–centre for T .

7.6 Quasi-isometry invariance of δ–hyperbolicity

We conclude with the most important result of this section, which allows us to define a
hyperbolic group.

Theorem 7.28. Suppose that X and X 1 are geodesic spaces and let f : X 1 Ñ X be an
pA,Bq–quasi-isometric embedding. If X is δ–hyperbolic then X 1 is δ1–hyperbolic, where δ1

depends only on A,B, δ.

Proof. Suppose X is δ–hyperbolic and let f : X 1 Ñ X be an pA,Bq–quasi-isometric embed-
ding. Let T 1 “ pα1, β1, γ1q be a geodesic triangle in X 1 and note that T “ pfpα1q, fpβ1q, fpγ1qq
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is a quasi-geodesic triangle in X. Thus, by Lemma 7.27, T has a δ2–centre p, where δ2 de-
pends only on A,B, δ. That is, there exist points fpa1q, fpb1q, fpc1q on fpα1q, fpβ1q, fpγ1q,
respectively, such that

dpp, fpa1qq, dpp, fpb1qq, dpp, fpc1qq ď δ2.

Thus,
dpfpa1q, fpa1qq, dpfpa1q, fpb1qq, dpfpa1q, fpc1qq ď 2δ2,

so fpa1q is a 2δ2–centre for T . Since f is a quasi-isometric embedding, we have

d1
pa1, b1q ď Adpfpa1q, fpb1qq ` B ď 2Aδ2 ` B

d1
pa1, c1q ď Adpfpa1q, fpc1qq ` B ď 2Aδ2 ` B,

so a1 is a p2Aδ2 ` Bq–centre for T 1. Thus, X 1 is δ1–hyperbolic, where δ1 “ 2Aδ2 ` B.

Corollary 7.29. Suppose that X and X 1 are geodesic spaces with X quasi-isometric to X 1.
Then X is hyperbolic if and only if X 1 is.

Proof. If X is quasi-isometric to X 1 then there exists a quasi-isometric embedding f : X 1 Ñ

X and a quasi-isometric embedding g : X Ñ X 1. Thus, by Theorem 7.28, X is hyperbolic
if and only if X is.

This theorem gives us a tool for showing two spaces are not quasi-isometric to each other,
by showing that one space is hyperbolic and the other is not. For example, we have the
following immediate consequences:

1. If n ě 2, then Rn is not quasi-isometric to a tree.

2. Rm ȷ Hn for all m,n ě 2.

Exercise 7.30. Show that two surface groups π1pSgq and π1pShq are quasi-isometric if and
only if either g “ h “ 1 or g, h ě 2.

8 Hyperbolic groups

We now define a hyperbolic group and prove some nice properties.

8.1 Definition and examples

Definition 8.1. A group G is hyperbolic if it is finitely generated and its Cayley graph is
hyperbolic.

This is well-defined and does not depend on the choice of Cayley graph – we saw in the
first half of the course that all Cayley graphs of a finitely generated group are quasi-isometric
to each other, and Corollary 7.29 tells us that if two spaces are quasi-isometric, then one is
hyperbolic if and only if the other is.

Applying the Milnor–Schwarz Lemma together with Corollary 7.29, we also have the
following result:

Lemma 8.2. Suppose a group G acts properly discontinuously and cocompactly on a proper
hyperbolic space. Then G is hyperbolic.
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Example 8.3. We list some examples and non-examples of hyperbolic groups.

1. All finite groups are hyperbolic, since their Cayley graphs are finite and therefore have
bounded diameter.

2. All free groups are hyperbolic, as their Cayley graphs are trees, which are 0–hyperbolic
spaces.

3. All surface groups π1pSgq with g ě 2 are hyperbolic, since they are quasi-isometric to
H2.

4. Zn is not hyperbolic for any n ě 2, since its Cayley graph is quasi-isometric to En.

Exercise 8.4. Define the pp, q, rq–triangle group T pp, q, rq to be the group with the following
presentation:

T pp, q, rq “ xa, b, c | a2 “ b2 “ c2 “ pabqp “ pacqq “ pbcqr “ 1y.

Show that T pp, q, rq is hyperbolic if and only if 1
p ` 1

q ` 1
r ă 1. (Hint: Use tessellations.)

Exercise 8.5. Define the Baumslag–Solitar group BSpm,nq to be the group with the fol-
lowing presentation:

BSpm,nq “ xa, b | am “ banb´1y.

(a) Show that BSp1, nq is not hyperbolic for any n ě 1.

(b) (Hard) Show that BSpm,nq is not hyperbolic for any m,n ě 1.

8.2 Subgroups of hyperbolic groups

We examine which groups can/cannot appear as subgroups of hyperbolic groups. We start
by introducing a nice class of subgroups called quasi-convex subgroups.

Definition 8.6 (Quasi-convex). A subspace Y of a geodesic metric space X is said to be
quasi-convex if there exists a constant K ě 0 such that for all y1, y2 P Y , each geodesic in
X joining y1 to y2 is contained in the K–neighbourhood of Y .

We consider a subgroup H ď G to be quasi-convex if it is quasi-convex as a subspace of
the Cayley graph. We show that quasi-convex subgroups always quasi-isometrically embed.

Lemma 8.7. Let G be a group with finite generating set S and let H be a subgroup of G. If
H is quasi-convex in ∆pG,Sq, then H is finitely generated and quasi-isometrically embeds
in G via the inclusion map, with respect to any word metric.

Proof. Let K be the quasi-convexity constant for H in ∆pG,Sq. Given h P H, take a
geodesic γ from 1 to h in ∆pG,Sq, and suppose it is labelled by a1, . . . , an. Since H is
K–quasi-convex, γ is contained in the K–neighbourhood of H. Thus, for each 1 ď i ď n,
dpa1 . . . ai, Hq ď K. Thus, for each i there is some word ui of length at most K such that
a1 . . . aiui P H. In particular, by multiplying a1 . . . aiui on the left by pa1 . . . ai´1ui´1q´1,
we see that hi :“ u´1

i´1aiui P H for each 1 ď i ď n (define u0 “ 1 and note that un “ 1 too).
See Figure 14.

We see that h “ h1 . . . hn, and moreover each hi has word length at most 2K ` 1 since
each ui has word length at most K and ai is a generator. Thus, we have shown that any
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Figure 14: Illustration of the proof of Lemma 8.7.

element of H can be written as a word in elements of H that lie in the ball of radius 2K ` 1
in ∆pG,Sq. That is, H is generated by the (finite) set of elements that lie in this ball.
Furthermore, the distance from 1 to h in the word metric associated to this generating set
is n, which is also the distance from 1 to h in ∆pG,Sq. Thus, the inclusion map from H to
∆pG,Sq is a quasi-isometric embedding.

Corollary 8.8. Let G be a hyperbolic group with finite generating set S and let H ď G be
quasi-convex in ∆pG,Sq. Then H is hyperbolic.

Proof. By Lemma 8.7, H is finitely generated and quasi-isometrically embeds in G. Thus,
by Theorem 7.28, H is hyperbolic.

Recall the definition of the centraliser of an element and the centre of a group:

Definition 8.9 (Centraliser and centre). For g P G, the centraliser of g is

CGpgq “ th P G | gh “ hgu.

The centre of G is
ZpGq “ th P G | @g P G, gh “ hgu.

We take the following two results as facts.

Proposition 8.10. If H1 and H2 are quasi-convex subgroups of G with finite generating
sets, then H1 X H2 is also quasi-convex.

Proposition 8.11. Let G be a hyperbolic group. The centraliser CGpgq of each element
g P G is a quasi-convex subgroup. In particular, CGpgq is hyperbolic.

We can now show that infinite order elements in a hyperbolic group generate quasi-
geodesics in the Cayley graph:

Lemma 8.12. Let G be a hyperbolic group with finite generating set S and let g P G be an
infinite order element. Then xgy, considered as a subset of the Cayley graph ∆pG,Sq, is a
quasi-geodesic.

Proof. We already saw that there exists a quasi-isometry f : R Ñ Z. Define γ “ γ1˝f , where
γ1 : Z Ñ ∆pG,Sq is defined as γ1pnq “ gn. It suffices to show that γ1 is a quasi-isometric
embedding.
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Recall that the centraliser CGpgq is quasi-convex by Proposition 8.11, thus CGpgq is
finitely generated and hyperbolic. In particular, we can apply Proposition 8.11 again to
show that CCGpgqphq is quasi-convex in CGpgq for any h P CGpgq. Note that the centre
of a group can be expressed as the intersection of the centralisers of the generators; this
can be seen from the definitions. Since CGpgq is finitely generated, ZpCGpgqq can therefore
be expressed as a finite intersection of subgroups of the form CCGpgqphq. As these are all
quasi-convex, Proposition 8.10 implies ZpCGpgqq is quasi-convex in CGpgq, hence finitely
generated and hyperbolic by Corollary 8.8.

Since ZpCGpgqq is abelian by definition, it must contain Zn as a finite-index subgroup
for some n ě 0. Thus, ZpCGpgqq is quasi-isometric to Zn. But we know that Zn is not
hyperbolic for n ě 2. We must therefore have n ď 1. Moreover, since xgy – Z is a subgroup
of ZpCGpgqq, it follows that ZpCGpgqq must be quasi-isometric to xgy.

Recall that we showed ZpCGpgqq is quasi-convex in CGpgq, which is quasi-convex in G.
Applying Lemma 8.7, we therefore have the following sequence of quasi-isometric embed-
dings induced by the inclusion maps:

xgy Ñ ZpCGpgqq Ñ CGpgq Ñ ∆pG,Sq.

We have therefore shown that γ1 is a quasi-isometric embedding, as required (noting that
Z – xgy via the map n ÞÑ gn).

We now look at some pathological subgroups that provide obstructions to hyperbolicity.

Proposition 8.13. A hyperbolic group cannot contain any subgroup isomorphic to Z2.

Proof. Let G be a δ–hyperbolic group with respect to a finite generating set S and let g P G
be an infinite order element. We wish to show there is no other infinite order element h P G
that commutes with g, meaning g is not a generator of a Z2 subgroup of G. Suppose such
an h existed. Then g, h P CGpgq and in particular the Z2 subgroup generated by g and
h is contained in CGpgq. Thus, it is sufficient to show CGpgq is contained in a bounded
neighbourhood of xgy – Z and hence cannot contain a Z2 subgroup.

Suppose h´1gph “ gq for some h P G, p, q P Z. Without loss of generality, suppose
|p| ď |q|. Then h´1gp

m

h “ gq
m

for all m P Z, so

dp1, gq
m

q ď 2dp1, hq ` dp1, gp
m

q “ 2dp1, hq `
|p|m

|q|m
dp1, gq

m

q.

Since xgy is a quasi-geodesic by Lemma 8.12, we must have |p| “ |q|. Thus, the positive
powers of g lie in distinct conjugacy classes. In particular, all conjugates of g lie at least
some distance ε from 1. Replacing g with a suitable power if necessary, we may therefore
assume no conjugate of g is at distance ď 5δ from 1.

We claim that if h P G commutes with g, then dph, xgyq ď 2dp1, gq ` 4δ “: K. This
would then imply CGpgq is contained in the K–neighbourhood of xgy, completing the proof.
Suppose this is not the case and let r P Z such that dph, xgyq “ dph, grq. Note that if
h commutes with g, then so does g´rh, and furthermore dpg´rh, 1q “ dpg´rh, g´rgrq “

dph, grq “ dph, xgyq ą K. Thus, replacing h with g´rh, we may assume dph, 1q ą K.
Let Q be a geodesic quadrilateral in ∆pG,Sq with vertices 1, g, gh “ hg, h and sides
r1, gs, rg, ghs “ gr1, hs, rhg, hs “ hrg, 1s, rh, 1s, and let hm be the point on rh, 1s at distance
dp1, gq ` 3δ from 1, as shown in Figure 15, so that dphm, 1q ą 1

2K “ dp1, gq ` 2δ and
dphm, hq ą 1

2K “ dp1, gq ` 2δ.
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ď 2δ

1

g

h

gh “ hg

hm

p “ gh1

dp1, gq ` 2δ
dp1, gq ` 2δ

Figure 15: Illustration of the proof of the Proposition 8.13.

Since ∆pG,Sq is δ–hyperbolic, dphm, pq ď 2δ for some point p on one of the other
three sides of Q by the slim triangles definition. Moreover, since dphm, 1q ą dp1, gq ` 2δ and
dphm, hq ą dp1, gq`2δ, we see that p cannot lie on r1, gs or rhg, hs, otherwise it would violate
the triangle inequality. Thus, p lies on rg, ghs and therefore has the form p “ gh1 for some
h1 on r1, hs. Recall that we chose h so that dph, xgyq “ dph, 1q. Thus, dphm, xgyq “ dphm, 1q

too. Since dphm, 1q ą dp1, gq ` 2δ and dphm, gq ď dphm, gh1q ` dpgh1, gq ď dpgh1, gq ` 2δ, we
therefore see that we must have dph1, 1q “ dpgh1, gq ą dp1, gq. This implies that dph1, hmq ď

3δ, so dph1, gh1q ď 5δ by the triangle inequality. But dph1, gh1q “ dp1, ph1q´1gh1q, so this
contradicts our assumption that no conjugate of g is at distance ď 5δ from 1.

In fact, this implies that a hyperbolic group cannot contain a Zn subgroup for any n ě 2,
since Z2 appears as a subgroup of all of these.

Recall that the Baumslag–Solitar group BSpm,nq is defined as

BSpm,nq “ xa, b | am “ banb´1y.

We see that Baumslag–Solitar groups also provide an obstruction to hyperbolicity. In fact,
since BSp1, 1q “ Z2, this is a strict generalisation of Proposition 8.13. We shall not include
a proof here, but we note that this can be proved using centralisers in a similar manner to
Proposition 8.13.

Proposition 8.14. A hyperbolic group cannot contain any Baumslag–Solitar subgroup.

Note that there are hyperbolic groupsG that contain non-hyperbolic subgroupsH (this is
highly non-trivial!), so the converse is not true; ifH contained a Baumslag–Solitar subgroup,
then G would also contain a Baumslag–Solitar subgroup, contradicting Proposition 8.14.

Exercise 8.15. Show that in BSp1, nq “ xa, b | a “ banb´1y, the cyclic subgroup xay is not
a quasi-geodesic.

8.3 Other properties of hyperbolic groups

We conclude by listing some other nice properties of hyperbolic groups, without proof.

Recall that by definition, hyperbolic groups are finitely generated. In fact, they are
finitely presented.
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Theorem 8.16. Every hyperbolic group is finitely presented.

Hyperbolic groups always contain free groups:

Theorem 8.17. Every hyperbolic group that is not finite or virtually Z contains a free
subgroup of rank 2, and hence free subgroups of any countable rank.

Hyperbolicity is equivalent to having a linear isoperimetric function:

Definition 8.18. Let G be a finitely presented group and fix a finite presentation of G.
Suppose w is a word in the generators and their inverses representing the identity in G.
Then we can reduce w to the trivial word by repeatedly applying the relations. We say G
has a linear isoperimetric function if we only need to do this at most fpnq times, where n
is the length of w and f : N Ñ N is linear.

Theorem 8.19. A group is hyperbolic if and only if it has a linear isoperimetric function.

In fact, the order of an isoperimetric function is invariant under quasi-isometry. For
example, Zn has a quadratic isoperimetric function for all n ě 2.

Hyperbolic groups also have nice algorithmic properties. For example, one can ask the
following question: for a finitely presented group G “ xS | Ry, is there an algorithm to
decide whether a word w in the generators S satisfies w “ 1? We say the group G has
solvable word problem if the answer is yes.

Theorem 8.20. Hyperbolic groups have solvable word problem. In fact, the word problem
can be solved in linear time (with respect to the length of the word).

We can ask other similar questions; for example, is there an algorithm to decide whether
one word is conjugate to another? This is known as the conjugacy problem.

Theorem 8.21. The conjugacy problem is solvable in linear time for hyperbolic groups.
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