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My research is in geometric group theory, an area of mathematics devoted to studying groups as geo-
metric objects in order to solve algebraic and algorithmic problems, as well as problems in other fields. For
example, geometric group theory was used by Agol and Wise to solve Thurston’s virtual Haken conjecture,
a major open problem in low-dimensional topology [5, 71]; by Sela to solve the famed Tarski conjecture
in first-order logic [102]; and by Bridson and Grunewald to solve Grothendieck’s First Problem on profi-
nite rigidity [29]. The methods of geometric group theory have also had extraordinary success outside of
mathematics, with Carlsson’s development of persistent homology in topological data analysis [32], Ghrist’s
applications of braid groups in robotics [62], and more recently exciting applications of graph braid groups
in topological quantum computing by Maciazek et al. [8, 9, 82, 81, 6, 72].

Groups are studied as geometric objects in two ways: through their actions on metric spaces, and by
considering groups as metric spaces in their own right via their Cayley graphs. One must beware that a
group can have many Cayley graphs, depending on the choice of generating set. However, so long as these
generating sets are finite, the distances in any two Cayley graphs are equivalent up to a fixed multiplicative
and additive constant; we say the Cayley graphs are quasi-isometric. By restricting ourselves to geometric
properties that are invariant under quasi-isometry, we therefore obtain invariants of the group itself.

A particularly powerful quasi-isometry invariant is the notion of hyperbolicity of a group, first intro-
duced by Gromov in two seminal papers [64, 65]. This property mimics classical hyperbolic geometry in a
way that is applicable to any geodesic metric space, including Cayley graphs. Hyperbolic groups enjoy a
wide variety of useful properties; for example, they are finitely presented and many algorithmic problems
are decidable (often computable as quickly as linear time) [7, 49]. Moreover, hyperbolic groups are “auto-
matic”, a formal criterion that implies many calculations can be carried out very efficiently [31]. Examples
of hyperbolic groups include finite groups, free groups, small-cancellation groups, and fundamental groups
of closed hyperbolic manifolds.

There have been many efforts to generalise Gromov’s notion of hyperbolicity in order to apply its rich
toolset to broader classes of groups. Generalisations include relatively hyperbolic groups, introduced
by Gromov and further developed by Farb, Bowditch and many others [64, 52, 28, 36, 94], acylindrically
hyperbolic groups, introduced by Sela [101] and Bowditch [27] and further developed by Osin [95], and
hierarchically hyperbolic groups (HHGs), introduced by Behrstock, Hagen, and Sisto [17]. My research
interests concern all of these, but I am primarily interested in developing the theory of HHGs.

Hierarchical hyperbolicity is an axiomatisation of geometric features common to a surprisingly large
class of seemingly disparate groups, including hyperbolic groups, fundamental groups of the special cube
complexes used by Agol and Wise, as well as mapping class groups of surfaces, which have long been
important in low-dimensional topology, and most 3–manifold groups [17, 18]. Behrstock–Hagen–Sisto’s
framework unites Masur and Minsky’s treatment of mapping class groups via subsurface projections and
curve graphs [86, 87, 14, 20] with Haglund and Wise’s treatment of cube complexes [71]. Hierarchical
hyperbolicity provides powerful tools to simultaneously study all of the groups encompassed, and often
allows techniques known for one group to be imported to another group in the class [17, 18, 16, 19]. For
example, HHGs satisfy a Masur–Minsky style distance formula and retain many of the strong algorithmic
and computational properties of hyperbolic groups [18, 67, 48].

One of my main interests is quotients of HHGs. The study of quotients of hyperbolic groups is a clas-
sical subject, traditionally approached via small-cancellation theory. Work of Delzant (and independently
Ol’shanskii) showed that quotients of hyperbolic groups by high powers of elements with large translation
length are hyperbolic [44, 92]. Small-cancellation theory has since been modernised by Osin [93], Wise [109],
and Dahmani–Guirardel–Osin [39], who produce similar theories that are applicable to relatively hyperbolic
groups, special cube complexes, and mapping class groups, respectively—this was used in the proof the the
virtual Haken conjecture [5]. Quotients of 3–manifolds may also be considered via the classical method of
Dehn filling [107, 108]. One may therefore wonder whether a version of Delzant’s result exists for HHGs.
Some progress has been made towards this by Behrstock–Hagen–Martin–Sisto in the case of mapping class
groups [15], however I seek to answer this question in its full generality.

I am also interested in braid groups of various spaces X. Introduced by Fox–Neuwirth [56], these can
be considered as fundamental groups of configuration spaces of X, tracking the motion of a collection of
particles as they travel around X. It is a folklore result that the classical braid group of a disc is an HHG;
one way to see this is by expressing it as a central extension of a mapping class group [25]. On the other
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hand, the braid group of a graph is the fundamental group of a special cube complex, hence is an HHG
[4, 34]. One may therefore wonder whether all braid groups are HHGs. I seek to answer this question, as
well as using HHG structures to characterise other aspects of non-positive curvature in braid groups.

My research programme can be summarised as follows.
(1) Hierarchically hyperbolic groups.
(1.1) Examples of HHGs. Expand the catalogue of examples of HHGs and apply HHG tools to obtain new

results for these groups, including characterisations of (relative) hyperbolicity.
‚ I have done this for graph braid groups [B2], graph products [B5], and “almost HHGs” [B4]; the
latter two with Jacob Russell. In ongoing work with Mark Hagen, we characterise when central
extensions of HHGs are HHGs, generalising the fact that classical braid groups are HHGs.

(1.2) Quotients of HHGs. Determine when a quotient of an HHG is again an HHG, and determine which
other properties are preserved.
‚ Abbott, Ng, Rasmussen, and I have shown that random quotients of HHGs are asymptotically
almost surely HHGs [B1]. Here, our model of randomness is given by taking random walks on
the Cayley graph. In ongoing work, we aim to produce a deterministic version of this result. We
also aim to show that suitable mapping class group quotients are isomorphic to the automorphism
groups of the corresponding curve graph quotients, providing an analogue of Ivanov’s famous result
that mapping class groups are isomorphic to the automorphism groups of their curve graphs [76].

(2) Braid groups.
(2.1) Graph braid groups. Characterise (relative) hyperbolicity in graph braid groups, determine necessary

and sufficient conditions for a graph braid group to split as a free product, and determine when a
graph braid group is isomorphic to a right-angled Artin group.
‚ I have partially answered all of the above questions [B2, B3]. In ongoing work, I am developing a
new HHG structure to fully characterise relative hyperbolicity.

(2.2) Other braid groups. Determine which other braid groups are HHGs. Use the HHG structure to prove
new results about these braid groups.
‚ I am currently working on showing that hybrid braid groups, obtained by gluing discs to graphs
along cycles, are HHGs. I also aim to answer this question for surface braid groups.

1. Hierarchically hyperbolic groups/spaces (HHGs/HHSs)

Several years ago, Behrstock, Hagen, and Sisto devised a version of non-positive curvature in groups called
hierarchical hyperbolicity, after identifying a collection of geometric features shared by some surprising
groups that were previously thought to be unrelated. Behrstock had proven a number of powerful results
for mapping class groups [20, 14] by identifying important properties of Masur and Minsky’s hierarchy
machinery using subsurface projections and curve graphs [86, 87], while Hagen had developed a curve graph
analogue for cube complexes, called the contact graph, which among other things allowed geodesics in
the cube complex to be tracked via geodesics in the contact graph [68]. Sisto recognised this tracking of
geodesics as a version of the hierarchy paths found in mapping class groups, an analogy that he had
already developed in the context of relatively hyperbolic groups and certain 3–manifold groups, which had
allowed him to prove results for these groups reminiscent of Masur–Minsky’s and Behrstock’s mapping
class group results [104, 103, 105]. Drawing inspiration from Kim and Koberda’s work [78], which had
previously attempted to draw comparisons between right-angled Artin groups and mapping class groups
by developing a curve graph analogue, the three authors conspired to develop a general structure called
hierarchical hyperbolicity, distilling the properties shared by mapping class groups, groups acting on cube
complexes, 3–manifold groups, and relatively hyperbolic groups into a set of axioms [17, 18].

Hierarchical hyperbolicity of a space is a quasi-isometry invariant property which combines elements
of both Euclidean and hyperbolic geometry. The geometric information of an HHS X is encoded in a
collection of projections onto hyperbolic spaces associated to X, in analogy with the subsurface projections
and corresponding curve graphs associated to a mapping class group. These projections are arranged via a
partial order called nesting, and flats (copies of Zn) are encoded via a combinatorial relation between the
projections called orthogonality. Due to the extra structure endowed by the projections and relations, one
must be careful to distinguish a hierarchically hyperbolic space from a hierarchically hyperbolic group. An
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HHG is not merely a group whose Cayley graph is an HHS; the hierarchy structure must also be equivariant
with respect to the group action. In fact, while the property of being an HHS is quasi-isometry invariant,
the property of being an HHG is not [96].

Figure 1. The right-angled Artin group pZˆZq˚Z can be endowed with an HHG structure.
Its Cayley graph (centre) contains both Euclidean planes and copies of the Cayley graph of
the hyperbolic group Z ˚ Z (left).

Behrstock, Hagen, and Sisto showed that a wide range of groups/spaces are hierarchically hyperbolic [18],
and used this unifying framework to further our understanding of their algebra and geometry [2, 19, 16].
Prominent examples include fundamental groups of Haglund and Wise’s compact special cube complexes
[71], fundamental groups of closed 3–manifolds with no Nil or Sol components [18], mapping class groups
[86, 87, 14, 20], and Teichmüller space with the Teichmüller or Weil–Petersson metric ([97, 46, 50] and
[30, 14, 20] respectively). One of the overarching goals of my research is to introduce new classes of groups
to the HHG arsenal. So far, I have expanded the catalogue of HHGs by adding graph products (Theorem
1), almost HHGs (Theorem 5), and graph braid groups (Theorem 13) to this list [B4, B5]. These new
examples are described in more detail below.

Hierarchically hyperbolic groups have far-reaching applications due to the richness of their structure
and the diversity of groups they encompass. For example, all hyperbolic groups are HHGs [19] and all
groups that are hyperbolic relative to HHGs are HHGs [18], and moreover these properties are encoded
in the HHG structure. It is therefore possible to characterise when a group is hyperbolic or relatively
hyperbolic in terms of its HHG structure [19, 99]. Thus, if one is able to construct an HHG structure
for a class of groups, one also often obtains characterisations of (relative) hyperbolicity for these groups.
So far, I have obtained such characterisations for graph products (Theorem 3) and graph braid groups
(Theorem 14 and Section 2.1.3). Other examples of powerful properties possessed by HHGs include a
quadratic isoperimetric inequality (and consequently solvable word problem), solvable conjugacy problem,
finite asymptotic dimension, a Tits alternative, quasi-isometric rigidity of flats, and a Masur–Minsky style
distance formula that allows one to express distances in the group in terms of distances in the projections
onto hyperbolic spaces [17, 18, 19, 16, 67].

1.1. Examples of HHGs. Here, I detail my results for graph products, almost HHGs, and central exten-
sions of HHGs. For graph braid groups, see Section 2.1.

1.1.1. Graph products. Given a finite simplicial graph Γ and a collection of finitely generated groups tGvu

indexed by the vertices of Γ, the graph product GΓ is defined to be the free product of the vertex groups
tGvu with commutation relations added between elements of Gv and Gw whenever v and w are connected
by an edge in Γ. In particular, if the vertex groups are all copies of Z, then GΓ is the right-angled Artin
group (RAAG) with defining graph Γ.

Behrstock, Hagen, and Sisto asked if graph products are HHGs when the vertex groups are HHGs. This
was partially answered by Berlai and Robbio, giving a positive answer with some additional requirements
on the vertex groups [23]. In joint work with Jacob Russell, we give a complete answer, showing that all
graph products of HHGs are themselves HHGs.

Theorem 1 ([B5]). A graph product of HHGs is an HHG.
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We do this by first showing that graph products GΓ are relative HHGs, that is, they are HHGs modulo
the geometry of the vertex groups. This is achieved by replacing the word metric on GΓ with the syllable
metric, a technique originally used by Kim and Koberda in their study of RAAGs [78]. Roughly, this
metric can be viewed as the equivalent of the Weil–Petersson metric on Teichmüller space. This new metric
gives GΓ the structure of a quasi-median graph, whose geometry has deep analogues with that of cube
complexes, as explored by Genevois [58]. This cubical-like geometry allows us to adapt techniques used by
Behrstock, Hagen, and Sisto in showing hierarchical hyperbolicity of RAAGs.

We then show that if the vertex groups are themselves HHGs, then we can extend the relative HHG
structure through the vertex groups to obtain an HHG structure on GΓ that uses the word metric. As a
byproduct of this method, we answer a second question of Behrstock, Hagen, and Sisto, who asked if graph
products are HHSs when endowed with the syllable metric.

Theorem 2 ([B5]). Any graph product with the syllable metric is an HHS.

As an application of Theorem 1, we are able to characterise when a graph product of hyperbolic groups
is itself hyperbolic, recovering a theorem of Meier [88].

Theorem 3 ([B5],[88]). Let Γ be a finite simplicial graph with hyperbolic groups associated to its vertices.
Let ΓF be the subgraph spanned by the vertices associated with finite groups. Then GΓ is hyperbolic if and
only if the following conditions hold.

(i) There are no edges connecting two vertices of Γ r ΓF .
(ii) If v is a vertex of Γ r ΓF then the link of v is a complete graph.
(iii) ΓF does not contain any induced squares.

Our use of Genevois’ theory of quasi-median graphs provokes more general questions. Quasi-median
graphs have analogues of hyperplanes which generalise those of a cube complex, they admit projections
onto convex subcomplexes, and moreover these analogues share many of the important geometric properties
of their cubical counterparts. Since Behrstock, Hagen, and Sisto show that any cube complex with a factor
system is an HHS, I conjecture that an equivalent notion exists for quasi-median graphs.

Question 4. Can an analogue of factor systems be developed for quasi-median graphs?

Genevois shows that certain wreath products, diagram products, and graphs of groups can be studied
via quasi-median graphs [58], so this could possibly provide a new source of examples of HHGs.

1.1.2. Almost HHGs. Abbott, Behrstock, and Durham introduce the class of almost HHGs in [2], gener-
alising HHGs by weakening one of the axioms. This axiom is often one of the more awkward ones to prove
in practice, and its weaker version is more natural in many ways. In a recent appendix to [2], Russell and
I show that this a priori weaker structure of an almost HHG can in fact always be promoted to an HHG
structure. This simplifies the definition of an HHG by allowing the weaker axiom to be used when proving
hierarchical hyperbolicity of a group.

Theorem 5 ([B4]). Every almost HHG admits an HHG structure.

This theorem strengthens results of Abbott–Behrstock–Durham about almost HHGs by showing that
they also hold true in the general setting. In particular, combined with their results, this allows for a
complete characterisation of contracting geodesics in HHGs. These are geodesics γ that behave like
those in hyperbolic space, in the sense that projections of balls onto γ have bounded image, where the
bound is independent of the radius of the ball.

Corollary 6 ([2]). Let G be an HHG. For any D ą 0 and K ě 1 there exists D1 ą 0 depending only on
D and G such that every pK,Kq–quasigeodesic γ has the property that γ is D1–contracting if and only if γ
has D–bounded projections onto the hyperbolic spaces in the HHG structure of G.

Theorem 5 also provides a crucial step in our proof that graph products of HHGs are HHGs (Theorem 1).
I expect this result to have many future applications in verifying that a group is hierarchically hyperbolic.
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1.1.3. Central extensions of HHGs. Consider a central extension

1 Ñ Z Ñ E Ñ GÑ 1.

That is, Z is a subgroup of the centre of E. This defines a cohomology class ω P H2pG,Zq, called the Euler
class of the extension. Work of Gersten shows that if the Euler class is bounded, then E is quasi-isometric
to Z ˆ G [60]. Furthermore, if Z – Zn then work of Kleiner–Leeb and Neumann–Reeves shows that E is
quasi-isometric to Z ˆG if and only if the Euler class is weakly bounded [79, 90]. This is further explored
by Frigerio and Sisto [57].

If we take G to be an HHG and Z – Zn (which is also an HHG), then by Theorem 1 and quasi-isometry
invariance of being an HHS, we therefore see that the central extension E must be an HHS if the Euler class
is weakly bounded. However, one must beware that the property of being an HHG is not always preserved
under quasi-isometry [96], so even if E is an HHS, it may not be an HHG. In ongoing work with Mark
Hagen, we seek to show that an HHG is produced if and only if the Euler class is bounded.

Conjecture 7. A central extension of an HHG by Zn is an HHG if and only if its Euler class is bounded.

Note, if G is a hyperbolic group, then a result of Mineyev tells us that the Euler class is always bounded
[89], thus this would imply all central extensions of hyperbolic groups by Zn must be HHGs. However, we
cannot hope for the Euler class to always be bounded if G is an HHG, since the Heisenberg group provides
an example of a central extension of Z2 by Z that is not an HHG.

We aim to prove Conjecture 7 by adapting quasimorphism arguments found in recent papers by Hagen–
Martin–Sisto and Hagen–Russell–Sisto–Spriano [69, 70]. Roughly, the idea is that a central extension with
bounded Euler class gives rise to a quasimorphism φ : E Ñ Zn. Using results of Abbott–Balasubramanya–
Osin [1], this can then be promoted to n actions of E on quasi-lines L1, . . . , Ln, corresponding to the n
generators of Zn. Combining these into a single action of E on the product L1 ˆ ¨ ¨ ¨ ˆLn ˆCaypG,Sq, for
a suitable generating set S of G, and showing that this action is metrically proper and cobounded, we then
see that E must be an HHG. This last step follows by combining techniques of Behrstock–Hagen–Sisto and
Hughes to show that any group acting metrically properly and coboundedly on a product of HHSs and
preserving the factors is an HHG [18, 75]. Conversely, we claim that the existence of such an action of E
on L1 ˆ ¨ ¨ ¨ ˆ Ln ˆ CaypG,Sq is sufficient to show the Euler class is bounded.

One interesting consequence of this would be that the classical braid group of a disc BnpDq is an HHG.
This is a folklore result that is generally believed to be true, but has not yet been formally written down
anywhere.

Corollary 8. The classical braid group BnpDq is an HHG.

This follows from a result of Birman [25] that implies BnpDq can be expressed as a central extension

1 Ñ Z Ñ BnpDq Ñ GÑ 1,

where Z is the infinite cyclic group generated by the Garside element, and G is the finite-index subgroup
of the mapping class group of the pn` 1q–times punctured sphere obtained by fixing one of the punctures.

1.2. Quotients of HHGs. In an ongoing joint research programme with Carolyn Abbott, Thomas Ng,
and Alexander Rasmussen, we study quotients of HHGs. This is a natural evolution of the classical topic
of small-cancellation theory, dating as far back as Dehn in 1911 [42], which concerns groups whose
relations have small overlap with each other. Such groups satisfy a number of nice algebraic, algorithmic,
and geometric properties; for example, groups that satisfy sufficiently strong small-cancellation conditions
are hyperbolic, and indeed these were one of Gromov’s main motivating examples of hyperbolic groups
[64]. This was also used by Ol’shanskii to prove that random quotients of the free group are almost surely
hyperbolic [91], using Gromov’s density model of randomness.

Small-cancellation groups were originally considered in the context of being nice quotients of a free
group, however this has since been extended to “small-cancellation quotients” of other groups. One exam-
ple, due to Delzant, shows that quotients of hyperbolic groups by certain powers of elements with large
asymptotic translation length are hyperbolic [44]. In another example, Osin and Groves–Manning consider
small-cancellation quotients of relatively hyperbolic groups, showing that such quotients will themselves be
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relatively hyperbolic [93, 66], with applications including proof of the virtual Haken conjecture [5] and solu-
tion of the isomorphism problem for certain relatively hyperbolic groups [38, 41]. This can also be seen as
a group-theoretic analogue of Thurston’s hyperbolic Dehn surgery theorem, which says that the boundary
tori of a cusped hyperbolic 3–manifold can be filled in to produce a closed hyperbolic 3–manifold [108]. In
work of Dahmani–Guirardel–Osin, Dahmani, and Dahmani–Hagen–Sisto, another group-theoretic analogue
of the Dehn filling procedure is produced for mapping class groups [39, 37, 40], showing among other things
that quotients of mapping class groups by high powers of Dehn twists are acylindrically hyperbolic. Yet
another generalisation of small-cancellation theory comes in the form of Wise’s cubical small-cancellation
theory [109], which in particular led to the Malnormal Special Quotient Theorem, a crucial ingredient in
the proof of the virtual Haken conjecture [5].

Given all of the above evidence, it is natural to consider whether a version of small-cancellation theory
can be developed for HHGs. This topic was first considered by Behrstock–Hagen–Sisto [16], who show that
certain quotients of HHGs are HHGs, and later by Behrstock–Hagen–Martin–Sisto [15], who show that
quotients of mapping class groups by high powers of Dehn twists (and certain other quotients) are HHGs.
We further develop this small-cancellation theory, producing results for random quotients of HHGs and
more general results regarding quotients of HHGs by high powers of elements. We also use this to prove an
analogue of a famous theorem of Ivanov [76], showing that certain quotients of mapping class groups are
isomorphic to the automorphism groups of the corresponding quotients of the curve graph.

1.2.1. Random quotients. In an upcoming paper, whose announcement is expected imminently, we show
that random quotients of HHGs are asymptotically almost surely HHGs, where our model of randomness is
defined by taking random walks on the Cayley graph. This can be seen as a generalisation of Ol’shanskii’s
result that random quotients of free groups are almost surely hyperbolic [91] and the folklore result that
random quotients of hyperbolic groups are asymptotically almost surely hyperbolic.

Theorem 9 ([B1]). Let G be an acylindrical HHG and let µ1, . . . , µk be probability measures on G such
that the support of each µi is both finite and generates G as a semigroup. Let twiu

k
i“1 be k independent

random walks of length n and generated by µ1, . . . , µk, respectively, and let mi “ mpµiq be the characteristic
index of µi. Then the quotient

G
M

@@

wm1
1 , . . . , wmk

k

DD

is an HHG with probability approaching 1 as n tends to infinity.

In fact, in many cases, we do not need to take powers of the random walks, providing stronger results
than those known in the deterministic setting.

Corollary 10 ([B1]). Let G be one of the following groups:
(1) an acylindrically hyperbolic, torsion-free HHG;
(2) a right-angled Artin group that does not split as a direct product;
(3) the mapping class group of a surface of genus g with p punctures;
(4) a right-angled Coxeter group that does not split as a direct product with two infinite factors.

Then the quotient
G
M

xxw1, . . . , wkyy

is an HHG with probability approaching 1 as n tends to infinity.

To prove these results, we first use Dahmani–Guirardel–Osin’s rotating families machinery [39] to
show that, given a collection of hyperbolically embedded subgroups tHiuiPI in G, if Ni Ĳ Hi such that
the family of conjugates tNg

i uiPI, gPG defines a very rotating family on the nesting-maximal hyperbolic
space and the quotients Hi

L

Ni are hyperbolic, then the quotient G
M

xxtNiuyy is an HHG. This generalises
work of Behrstock–Hagen–Sisto, who prove this in the single subgroup case [16]. We then apply results
of Maher–Tiozzo and Maher–Sisto [84, 83] to show that collections of random walks twiu satisfy these
hypotheses. Here, the hyperbolically embedded subgroups are the unique maximal elementary subgroups
Epwiq containing wi, and raising wi to the power of mi ensures xwmi

i y is normal in Epwiq. The family
of conjugates of wmi

i can then be shown to asymptotically almost surely define a very rotating family
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by applying results of Dahmani–Guirardel–Osin [39] together with a non-matching argument to show the
random walks do not fellow-travel, similar to that used by Abbott and Hull [3].

1.2.2. General quotients. We are currently working on showing that versions of the above results also hold
in the deterministic setting. We make use of combinatorial HHGs, a concept recently introduced by
Behrstock, Hagen, Martin, and Sisto which provides a simple combinatorial criterion, in terms of an action
on a hyperbolic simplicial complex, for a group to be an HHG [15]. Behrstock, Hagen, Martin, and Sisto
apply this to show that quotients of mapping class groups by certain powers of Dehn twists are HHGs.
Motivated by a theorem of Delzant, which says that quotients of hyperbolic groups by certain powers of
elements with large asymptotic translation length are hyperbolic [44], we conjecture that a more general
version of the Behrstock–Hagen–Martin–Sisto result exists.

Conjecture 11. Let G be an acylindrically hyperbolic combinatorial HHG. There exists a constant N ě 1
such that for any infinite order element g P G and any non-zero integer k, the quotient G{

@@

gkN
DD

is an
acylindrically hyperbolic combinatorial HHG.

A result of Durham–Hagen–Sisto tells us that any infinite order element g in an HHG G is axial [47],
that is, there exist associated hyperbolic spaces CpU1q, . . . , CpUnq in the HHG structure in which the orbits
of xgy are quasi-lines. Our idea is to fix a basepoint x P G, consider its projections πipxq to the hyperbolic
spaces CpUiq, and then cone off the axes xgy¨πipxq and their conjugates. If we then add in new line domains
for each of the axes we coned off, this gives a new combinatorial HHG structure on G. We can then pass
to the quotient to obtain a combinatorial HHG structure there.

In practice, the step of passing to the quotient is quite involved, with the Behrstock–Hagen–Martin–Sisto
result relying on a generalisation of Dahmani’s composite rotating families machinery to ensure lifts
interact nicely with the combinatorial structure [36]. We expect that this is where most of the hard work
will be. Additionally, we expect that we may need to impose a lower bound on the asymptotic translation
length of our element g in the hyperbolic spaces CpUiq, in analogy with Delzant’s result [44].

By taking successive quotients, we may even be able to obtain a more general result. In the above
argument, the domains corresponding to the orbits of xgy are arranged to be nesting-minimal in the combi-
natorial HHG structure. After quotienting by these, we may repeat the same procedure on nesting-minimal
domains in the new structure, thus proceeding up the nesting lattice in the original HHG structure. This
strategy is executed by Behrstock–Hagen–Martin–Sisto for mapping class groups, to great effect.

Some immediate consequences of our conjecture would be that such quotients have finite asymptotic
dimension and solvable word and conjugacy problems [16, 18, 67]. This would be applicable to, for example,
quotients of mapping class groups by large powers of reducible elements, or quotients of right-angled Artin
groups by parabolic subgroups.

1.2.3. Curve complex quotients. A celebrated theorem of Ivanov says that the extended mapping class group
MCG˘pΣq of an orientable surface Σ with genus g ě 2 and n ě 0 boundary components is isomorphic to
the automorphism group AutpCpΣqq of its curve complex CpΣq [76]. We aim to show that the same theorem
can be proven for appropriate quotients of mapping class groups. This would provide a first step towards
proving quasi-isometric rigidity results for mapping class group quotients; cf. [73, 20]. This complements
recent work by Mangioni–Sisto on the same topic [85].

Conjecture 12. Let Σ be an orientable surface with genus g ě 2 and n ě 0 boundary components, and
let N Ĳ MCG˘pΣq be such that the family of conjugates tNgu defines a very rotating family on CpΣq.
Then MCG˘pΣq

M

N – Aut
´

CpΣq
M

N

¯

.

Our method of proof is to use a result of Aramayona–Leininger that says CpΣq has an exhaustion by
finite rigid sets [10, 11]; that is, there exists a countable collection of finite subsets X whose union is
CpΣq and which have the property that for any locally injective map φ : X ãÑ CpΣq, there exists a unique
f P AutpCpΣqq with φ “ f |X . Moreover, since tNgu is a very rotating family, results of Dahmani–Guirardel–
Osin tell us that N acts on CpΣq with large injectivity radius [39] and so in particular, finite rigid sets are
preserved in the quotient. Thus, we can take a finite rigid set X Ď CpΣq, project to X̄ Ď CpΣq

M

N , and
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take ψ̄ P Aut
´

CpΣq
M

N

¯

, which restricts to an injection φ̄ : X̄ ãÑ CpΣq
M

N . We then lift to φ : X ãÑ CpΣq

and take the unique extension f P AutpCpΣqq. Ivanov’s theorem then tells us that f corresponds to a unique
element g PMCG˘pΣq, which then gives us an element ḡ P MCG˘pΣq

M

N .
One may also be able to prove the above conjecture directly using curves on surfaces techniques similar to

Ivanov’s original proof, by showing that traditional invariants such as intersection number are well-defined
in the quotient. Again, this can be shown using large injectivity radius arguments.

2. Braid groups

Given a topological space X, one can construct the configuration space Ctop
n pXq of n particles on X

by taking the direct product of n copies of X and removing the diagonal. Informally, this space tracks the
movement of the particles through X; removing the diagonal ensures the particles do not collide. One then
obtains the unordered configuration space UCtop

n pXq by taking the quotient by the action of the symmetric
group on the coordinates of Xn. Finally, the braid group BnpX,Sq is defined to be the fundamental
group of UCtop

n pXq with base point S (in general we shall assume X to be connected and drop the base
point from our notation).

Braid groups have been a popular object of study since they were first introduced by Artin in 1926
[12]. Originally, these were studied geometrically as knots; see Figure 2. One can obtain the configuration
space interpretation from this geometric model by taking horizontal cross-sections, each of which gives an
arrangement of particles on a disc. Each cross-section can be thought of as a snapshot in time, tracking the
locations of the particles as they weave between each other. This configuration space approach was first
introduced by Fox and Neuwirth [56].

Figure 2. A 3–braid.

Classically, the space X is taken to be a disc D, as in the above example. In this case, Conjecture 7
would imply that BnpDq is an HHG, as explained in Corollary 8. However, one may also study braid groups
of other spaces. Taking X to be a manifold, Birman showed that braid groups are trivial in dimensions 3
and higher [26]. Therefore, in some sense the only interesting cases are when X has dimension 1 or 2; that
is, when X is a graph, a surface, or a hybrid of the these. I wish to provide a full analysis of whether such
braid groups are HHGs, and use any resulting HHG structure to deduce new properties of BnpXq.

2.1. Graph braid groups. My recent work has been concerned with the case where X is a finite graph
Γ [B2, B3]. These so-called graph braid groups were first developed by Abrams [4], who showed that by
discretising UCtop

n pΓq, one can express BnpΓq as the fundamental group of a non-positively curved cube
complex UCnpΓq; this was also shown independently by Świątkowski [106]. Results of Crisp–Wiest, and
later Genevois, show that these cube complexes are in fact special [34, 59], in the sense of Haglund and
Wise [71]. It then follows from work of Behrstock, Hagen, and Sisto that graph braid groups are HHGs
[17]. Furthermore, I exploit the cube complex structure to construct an explicit HHG structure on BnpΓq,
expressed in terms of combinatorial properties of subgraphs of Γ.

Theorem 13 ([B2]). BnpΓq is an HHG for all n ě 1.

One immediate consequence of this is that one can characterise hyperbolicity of BnpΓq in terms of graph
theoretic properties of Γ. This recovers a result of Genevois.

Theorem 14 ([B2],[59]). BnpΓq is hyperbolic if and only if one of the following holds.
8
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(1) n “ 1.
(2) n “ 2 and Γ does not contain two disjoint cycles.
(3) n “ 3 and Γ does not contain two disjoint cycles, nor does it contain a vertex of valence ě 3 disjoint

from a cycle.
(4) n ě 4 and Γ does not contain two disjoint subgraphs, each of which is a vertex of valence ě 3 or a

cycle.

Relative hyperbolicity proves to be more elusive. I produce a partial characterisation, but this hinges
on a conjecture that remains to be proven. The intricacies of this problem are outlined in more detail in
Section 2.1.3.

2.1.1. Right-angled Artin groups. As fundamental groups of special cube complexes, graph braid groups
BnpΓq embed in right-angled Artin groups [71]. In fact, Sabalka also shows that all right-angled Artin
groups embed in graph braid groups [100]. It is therefore natural to ask when a graph braid group is
isomorphic to a right-angled Artin group. This question was first studied by Connolly and Doig in the
case where Γ is a linear tree [33], and later by Kim, Ko, and Park, who show that for n ě 5, BnpΓq is
isomorphic to a right-angled Artin group if and only if Γ does not contain a subgraph homeomorphic to
the letter “A” or a certain tree [77]. I strengthen this theorem by showing that if Γ does not contain a
subgraph homeomorphic to the letter “A”, then BnpΓq must split as a non-trivial free product. Thus, for
n ě 5, BnpΓq is never isomorphic to a right-angled Artin group with connected defining graph containing
at least two vertices.

Theorem 15 ([B3],[77]). Let Γ and Π be finite connected graphs with at least two vertices and let n ě 5.
Then BnpΓq is not isomorphic to the right-angled Artin group AΠ.

This theorem raises a natural question: can right-angled Artin groups with connected defining graphs
be isomorphic to graph braid groups BnpΓq for n ď 4?

Question 16. Does there exist some n ě 2 and a finite connected graph Γ such that BnpΓq is isomorphic
to a non-cyclic right-angled Artin group with connected defining graph?

Most signs point to no. As we shall see below, it is very common for a graph braid group to split as a free
product. Moreover, the main examples where it does not split as a free product arise when Γ is non-planar,
in which case the abelianisation of BnpΓq has torsion [77]. However, this also precludes BnpΓq from being
a right-angled Artin group.

2.1.2. Free products and graphs of groups. Theorem 15 in fact follows as a consequence of a much more
general result that I prove, which provides two criteria for a graph braid group to split as a free product.
In the theorem below, a flower graph is a graph obtained by gluing cycles and segments along a single
central vertex.

Theorem 17 ([B3]). Let n ě 2 and let Γ be a finite graph. Suppose one of the following holds:
‚ Γ is obtained by gluing a non-segment flower graph Φ to a connected non-segment graph Ω along a
vertex v, where v is either the central vertex of Φ or a vertex of Φ of valence 1;

‚ Γ contains an edge e such that Γr e̊ is connected but Γre is disconnected, and one of the connected
components of Γ r e is a segment.

Then BnpΓq – H ˚ Z for some non-trivial subgroup H of BnpΓq.

It would be interesting to know if the converse is true; I am not aware of any graph braid groups that
split as free products but do not satisfy either of the above criteria.

Question 18. Are there any graph braid groups that split as non-trivial free products but do not satisfy
the hypotheses of Theorem 17?

I prove Theorem 17 by applying a technical result on graph of groups decompositions of graph braid
groups, which I believe to be of independent interest. Graph of groups decompositions were first considered
for pure graph braid groups PBnpΓq by Abrams [4] and Ghrist [61], and more recently Genevois produced
a limited result of this flavour for BnpΓq [59]. I use the structure of UCnpΓq as a special cube complex to

9



Daniel Berlyne Research Statement

produce a general construction that allows one to explicitly compute graph of groups decompositions of
graph braid groups. In particular, the vertex groups and edge groups are braid groups on proper subgraphs.
By iterating this procedure, one is therefore able to express a graph braid group as a combination of simpler,
known graph braid groups.

Theorem 19 ([B3]). Let Γ be a finite connected graph and let e1, . . . , em be distinct edges of Γ sharing a
common vertex. The graph braid group BnpΓq decomposes as a graph of groups pG,Λq, where:

‚ V pΛq is the collection of connected components K of UCnpΓ r p̊e1 Y ¨ ¨ ¨ Y e̊mqq;
‚ EpΛq is the collection of hyperplanes H of UCnpΓq labelled by some ei, where H joins K and L if
it has one combinatorial hyperplane in K and another in L;

‚ for each K P V pΛq, we have GK “ BnpΓ r p̊e1 Y ¨ ¨ ¨ Y e̊mq, SKq for some SK P K;
‚ for each Hi P EpΛq labelled by ei, we have GHi “ Bn´1pΓr ei, SHi XpΓr eiqq, for some SHi in one
of the combinatorial hyperplanes H˘i ;

‚ for each edge H P EpΛq joining vertices K,L P V pΛq, the monomorphisms φ˘H are induced by the
inclusion maps of the combinatorial hyperplanes H˘ into K and L.

By selecting the edges e1, . . . , em carefully, one may often be able to arrange for the edge groups of pG,Λq
to be trivial. This results in a wide range of graph braid groups that split as non-trivial free products, as
shown in Theorem 17.

This construction also aids in the computation of specific graph braid groups, especially when combined
with results in which I give combinatorial criteria for adjacency of two vertices of Λ, as well as providing a
way of counting how many edges connect each pair of vertices of Λ. Traditionally, graph braid group com-
putations are performed by using Farley and Sabalka’s discrete Morse theory to find explicit presentations
[54, 55], however in practice these presentations are often highly complex, difficult to compute, and are
obfuscated by redundant generators and relators. I believe the graph of groups approach to be both easier
to apply and more powerful in many situations, as evidenced by my theorems and the numerous examples
I am able to compute [B3].

2.1.3. (Relative) hyperbolicity. The graphical requirements in the cases of n “ 3 and n ě 4 in Theorem 14
turn out to be quite restrictive: B3pΓq is hyperbolic if and only if Γ is a tree, a sun graph, a flower graph, or
a pulsar graph; and for n ě 4, BnpΓq is hyperbolic if and only if Γ is a flower graph. One shortcoming of this
theorem was that it introduced classes of graphs whose braid groups were unknown: sun graphs and pulsar
graphs (braid groups on flower graphs are known to be free [59], while braid groups on trees are known to
be free for n “ 3 [54]). By applying Theorem 17, I am able to (partially) answer a question of Genevois
[59] and thus provide a more complete algebraic characterisation of hyperbolicity. The only exception is
when Γ is a generalised theta graph, which proves resistant to computation. Here, a generalised theta
graph Θm is a graph obtained by gluing m cycles along a non-trivial segment.

Theorem 20 ([B3],[59]). Let Γ be a finite connected graph that is not homeomorphic to Θm for any m ě 0.
The braid group B3pΓq is hyperbolic only if B3pΓq – H ˚ Z for some group H.

Genevois also provides a graphical characterisation of toral relative hyperbolicity [59]. Again, this theo-
rem introduced several classes of graphs for which the braid groups were unknown. In the case of n “ 4,
this is a finite collection of graphs: the graphs homeomorphic to the letters “H”, “A”, and “θ”. I am able
to precisely compute the braid groups of these graphs, completing the algebraic characterisation of toral
relative hyperbolicity for n “ 4 and answering a question of Genevois [59].

Theorem 21 ([B3],[59]). Let Γ be a finite connected graph. The braid group B4pΓq is toral relatively
hyperbolic only if it is either a free group or isomorphic to F10 ˚ Z2 or F5 ˚ Z2 or an HNN extension of
Z ˚ Z2.

It is much more difficult to characterise relative hyperbolicity in general for graph braid groups. Indeed,
I show that in some sense it is impossible to obtain a graphical characterisation of the form that exists for
right-angled Artin and Coxeter groups, by providing an example of a graph braid group that is relatively
hyperbolic but is not hyperbolic relative to any braid groups of proper subgraphs. This answers a question
of Genevois in the negative [59].

10



Daniel Berlyne Research Statement

Theorem 22 ([B3]). There exists a graph braid group BnpΓq that is hyperbolic relative to a proper, non-
relatively hyperbolic subgroup P that is not contained in any graph braid group of the form BkpΛq for k ď n
and Λ Ĺ Γ. See Figure 3.

Γ

X “ UC2pΓq

Figure 3. B2pΓq is isomorphic to π1pXq, which is hyperbolic relative to the subgroup P
generated by the fundamental groups of the three shaded tori.

Note that the peripheral subgroup P in the above example is precisely the group constructed by Croke
and Kleiner in [35]. In particular, it is isomorphic to the right-angled Artin group AΠ where Π is a segment
of length 3. This theorem indicates that non-relatively hyperbolic behaviour cannot be localised to specific
regions of the graph Γ. Instead, non-relative hyperbolicity is in some sense a property intrinsic to the
special cube complex structure.

Unfortunately, this means the HHG structure constructed in my Ph.D. thesis [B2] is insufficient to
capture the relatively hyperbolic structure. Russell shows that HHGs are relatively hyperbolic if and
only if they admit an HHG structure S with isolated orthogonality [99], a simple criterion restricting
where orthogonality may occur in the HHG structure. Roughly, this means there exist I1, . . . , In P S
that correspond to the peripheral subgroups. However, the above example is problematic here; since the
peripheral subgroup P does not arise as a braid group on a subgraph of Γ, it does not appear in the natural
HHG structure that I describe [24]. Thus, Russell’s isolated orthogonality criterion is not able to detect
relative hyperbolicity of B2pΓq through this specific HHG structure. The question of how to classify relative
hyperbolicity in graph braid groups therefore still remains.

Question 23. When is a graph braid group relatively hyperbolic?

One potential approach would be to construct a hierarchically hyperbolic structure on BnpΓq with greater
granularity than the existing one, and then apply Russell’s isolated orthogonality criterion. In particular,
one would have to construct a factor system on the cube complex UCnpΓq that contains enough subcom-
plexes to guarantee that any peripheral subgroup of BnpΓq will always appear as the fundamental group
of such a subcomplex. Indeed, I prove a characterisation of relative hyperbolicity in graph braid groups
under the assumption that such an HHG structure exists [B2], which proceeds by a similar argument to
Levcovitz’s characterisation of relative hyperbolicity in right-angled Coxeter groups [80].

2.2. Other braid groups. Having considered the case of braid groups in dimension 1, it remains to study
dimension 2. For example, one may study braid groups of surfaces, or braid groups of hybrid spaces
consisting of combinations of graph and surfaces.

2.2.1. Surface braid groups. As described in Corollary 8, it is a folklore result that the braid group of a disc
is an HHG. However, the question remains open for surfaces in general.

Question 24. If Σ is an orientable surface, is the braid group BnpΣq an HHG?

The fact that disc braid groups and graph braid groups are HHGs already provides some evidence for a
positive answer to this question. Beyond this, one may also note that the word problem has been shown to
be solvable for surface braid groups by González-Meneses [63], as has the conjugacy problem in one specific
case, by Bellingeri–Godelle (although it remains open in general) [22]. These are both known to be solvable
for HHGs [18, 67].
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One may also look to a theorem of Birman that gives an exact sequence relating surface braid groups to
mapping class groups [25]. In the case that Σ has genus g ě 2, we have the following short exact sequence:

1 Ñ BnpΣq ÑMCG˘pΣ; tp1, . . . , pnuq ÑMCG˘pΣq Ñ 1.

Here, p1, . . . , pn are marked points on Σ corresponding to the n particles in the braid group. Thus, BnpΣq
is isomorphic to the kernel of the homomorphism given by forgetting these marked points. One must be
careful with this approach; the kernel is known to be highly distorted, thus it may not be possible to recover
an HHG structure on BnpΣq directly from the ambient structure of the mapping class group.

However, this approach may be fruitful for obtaining HHG structures on BnpΣq–extensions of subgroups
of MCG˘pΣq. This is a direct generalisation of the n “ 1 case (note that B1pΣq “ π1pΣq). In the case of
n “ 1, Farb and Mosher [53] show that any group homomorphism G Ñ MCG˘pΣq gives rise to a group
EG and a commutative diagram

1 π1pΣq EG G 1

1 π1pΣq MCG˘pΣ; pq MCG˘pΣq 1

and conversely, every group extension 1 Ñ π1pΣq Ñ E Ñ G Ñ 1 determines a homomorphism G Ñ

MCG˘pΣq, which in turn determines an extension 1 Ñ π1pΣq Ñ EG Ñ G Ñ 1 isomorphic to the given
extension. This follows from the fact that the outer automorphism group Outpπ1pΣqq is isomorphic to
MCG˘pΣq, a result due to Dehn–Nielsen [43] and Baer [13]. Thus, the π1pΣq–extensions of a group G are
in bijective correspondence with the monodromy homomorphisms GÑ Outpπ1pΣqq –MCG˘pΣq.

The isomorphism OutpBnpΣqq – MCG˘pΣq in fact holds for any n ‰ 2; this is a result of Bellingeri
[21]. Thus, one may replace the short exact sequences in the above commutative diagram with the more
general versions, giving a bijective correspondence between the BnpΣq–extensions of a group G and the
monodromy homomorphisms GÑ OutpBnpΣqq –MCG˘pΣq.

Motivated by analogies between Hn and the Teichmüller space T pΣq of a surface, Farb and Mosher
adapted the notion of convex cocompact Kleinian groups to define a subgroup G ď MCG˘pΣq to be
convex cocompact if it acts cocompactly on a quasi-convex subset of T pΣq. Work of Farb–Mosher [53]
and Hamenstädt [74] then shows that a π1pΣq–extension E of a group G is hyperbolic if and only if the
associated homomorphism G Ñ MCG˘pΣq has finite kernel and convex cocompact image. We may ask
the same question for BnpΣq–extensions in general.

Question 25. Let G Ñ MCG˘pΣq be a group homomorphism with finite kernel and convex cocompact
image. Is the corresponding BnpΣq–extension hierarchically hyperbolic?

Note that one cannot hope for such BnpΣq–extensions to be hyperbolic, since BnpΣq contains a Z2

subgroup for n ě 2. However, evidence of hierarchical hyperbolicity comes from the ongoing programme
to study candidates for “geometrically finite” subgroups G ď MCG˘pΣq, whose π1pΣq–extensions are
conjectured to be HHGs by Dowdall–Durham–Leininger–Sisto [45]. These subgroups generalise the con-
vex cocompact ones, and some results in this direction have already been proven by Dowdall–Durham–
Leininger–Sisto and Russell [45, 98]. Given a positive answer to Question 24, one may therefore hope for a
positive answer to Question 25, too.

In fact, a special case of the Fadell–Neuwirth short exact sequence for pure surface braid groups [51] may
help illuminate Question 24, too:

1 Ñ π1pΣ r tp1, . . . , pn´1uq Ñ PBnpΣq Ñ PBn´1pΣq Ñ 1.

By inducting on n, one may use this short exact sequence to express PBnpΣq as a series of surface group
extensions, beginning with an expression of PB2pΣq as a π1pΣ r pq–extension of π1pΣq. Thus, if we can
show that this fits into the framework of the Dowdall–Durham–Leininger–Sisto conjecture, this would give
a way of showing that (pure) surface braid groups are HHGs.

A positive answer to Question 24 would prove several new properties for surface braid groups. For exam-
ple, it would show that they have a quadratic isoperimetric inequality, that they satisfy a Tits alternative,
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and that they have solvable conjugacy problem (the latter is a well-known open question for surface braid
groups [22]).

2.2.2. Hybrid braid groups. One may also consider braid groups BnpXq where X is obtained by gluing
graphs and surfaces together. Since graph braid groups are known to be HHGs via their structure as
fundamental groups of special cube complexes (Theorem 13) and disc braid groups are known to be HHGs
via their structure as extensions of mapping class groups (Corollary 8), one expects BnpXq to be an HHG
with some kind of hybrid structure arising by combining the cube complex structure with the mapping
class group structure. This question was originally proposed to me by Genevois.

Question 26. Let X be a space obtained by gluing discs to a finite graph Γ, where the discs are glued to
cycles of Γ along their boundary. What are the properties of BnpXq? Is it an HHG?

If the above cycles (call them Ci) each contain at most one vertex vi of valence ě 3, then I claim that a
version of Theorem 19 can be applied, where the edges e1, . . . , em are the edges of Γ sharing the vertex vi
and not contained in Ci. These edges collectively separate the disc Di from the rest of X, thus the vertex
and edge groups are products of braid groups of Di and braid groups of X r Di. Applying this to each
disc, we can therefore express BnpXq as a graph of groups where the vertex and edge groups are products
of graph braid groups and disc braid groups.

Conjecture 27. Let X be a space obtained by gluing discs D1, . . . , Dk to disjoint cycles C1, . . . , Ck of a
graph Γ, where each Ci has at most one vertex of valence ě 3. Then BnpXq decomposes as a graph of
groups whose vertex groups and edge groups are products graph braid groups and disc braid groups.

Having proven this conjecture, I will apply Theorem 1 together with Theorem 13 and Corollary 8 to
show that the vertex and edge groups are HHGs. A theorem of Berlai and Robbio [23] regarding graphs of
HHGs can then be applied, completing the proof that BnpXq is an HHG.

Note that if we remove the conditions on the cycles Ci, then we simply obtain the definition of a 2–
dimensional CW-complex. Thus, one may study hybrid braid groups in their full generality as braid groups
of 2–complexes. This allows us to apply a discretisation process as in the surface braid group case. In the
best case scenario, our techniques for surface braid groups may generalise completely.

Question 28. Let X be a 2–dimensional CW-complex. Is BnpXq an HHG?
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