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Abstract

Hierarchical hyperbolicity of graph products and graph braid groups

by

Daniel James Solomon Berlyne

Advisor: Jason Behrstock

This thesis comprises three original contributions by the author concerning hierarchical

hyperbolicity, a coarse geometric tool developed by Behrstock, Hagen, and Sisto to provide

a common framework for studying aspects of non-positive curvature in a wide variety of

groups and spaces.

We show that any graph product of finitely generated groups is hierarchically hyperbolic

relative to its vertex groups. We apply this to answer two questions of Genevois about the

electrification of a graph product of finite groups. We also answer two questions of Behrstock,

Hagen, and Sisto: we show that the syllable metric on a graph product forms a hierarchically

hyperbolic space, and that graph products of hierarchically hyperbolic groups are themselves

hierarchically hyperbolic groups. This last result is a strengthening of a result of Berlai and

Robbio by removing the need for extra hypotheses on the vertex groups. To achieve this, we

develop a technique that allows an almost hierarchically hyperbolic structure to be promoted

to a hierarchically hyperbolic structure. This technique has found independent use in work

of Abbott, Behrstock, and Durham, where it is used to significantly streamline their proofs.

We then turn to graph braid groups, using their structure as fundamental groups of

special cube complexes to endow them with a natural hierarchically hyperbolic structure.

By expressing this structure in terms of the graph, we obtain characterisations of when these

groups are hyperbolic or acylindrically hyperbolic. We also conjecture and partially prove a

similar characterisation of relative hyperbolicity.

iv



Acknowledgments

I would like to thank my advisor, Jason Behrstock, who has provided guidance throughout

my PhD, patiently answering all my questions while also teaching me valuable lessons on

how to thrive as an independent mathematician. I remember well the day you approached

me after attending my talk on Teichmüller theory and suggested I speak with you. Despite

my background being primarily in complex analysis, you made the transition to geometric

group theory easy and exciting. Your support and your advocacy on my behalf have been

invaluable. I also extend my thanks to Ilya Kapovich and Joseph Maher for serving on my

thesis committee alongside Jason.

I would also like to thank my past and current collaborators. You have made mathematics

an even more enjoyable and meaningful pursuit than it already was. The papers I wrote

with Jacob Russell have been formative to my identity as a mathematician, while my current

venture with Carolyn Abbott, Alex Rasmussen, and Thomas Ng has already provided many

inspiring and eye-opening conversations of its own. It is fair to say that these joint works

have vastly changed my perspective on how mathematics ought to be undertaken.

I would like to thank Jason Behrstock, Mark Hagen, Carolyn Abbott, Ilya Kapovich, and

Olga Kharlampovich for writing letters of recommendation for me. You were instrumental

in my success in finding a job. I would especially like to thank Mark for inviting me to speak

at Bristol and spending so much time talking about mathematics with me and introducing

me to Bristol’s mathematics community. Your hospitality made me feel very welcome, and

I am sure that my postdoc in Bristol is in no small part due to your efforts.
v



I am tremendously grateful for all the friends I made along my journey as a graduate

student. I thank Jacob Russell, Ivan Levcovitz, Hai Yu, GB Pignatti, Laura Lopez-Cruz, AJ

Stas, Chris Natoli, Alice Kwon, and Kieran O’Reilly for teaching and learning with me, and

for brightening my experience at the Graduate Center. I have many fond memories of our

experiences in the shoebox. I am also very fortunate to have met so many wonderful people

through conferences, such as Harry Petyt, Bruno Robbio, Davide Spriano, Yvon Verberne,

and Kasia Jankiewicz.

I would like to thank Jason Behrstock, Abhijit Champanerkar, Ilya Kofman, and Joseph

Maher for countless enjoyable Korean lunches, both down in Midtown and up near Columbia.

The seminars you run and the community you have fostered around them have been a

cornerstone to my graduate experience. You have taught me a great deal about hierarchical

hyperbolicity, 3–manifolds, knot theory, and random walks, all of which have influenced the

research I conduct today.

I am grateful to my Master’s advisor, Saul Schleimer, for introducing me to geometric

group theory, even if I didn’t know it at the time. You planted the seed which turned my

interest in Teichmüller space and Beltrami differentials into an appreciation of mapping class

groups and eventually into a love of geometric group theory as a whole.

I am thankful to my teachers at the Manchester Grammar School, who opened my mind

to the sheer breadth of mathematics and its interconnectedness. I am especially thankful to

Neil Sheldon, who seemed to be able to teach everything under the sun, from probability to

differential equations. I will always remember the summer of 2010 when you taught us an

entire numerical analysis course in one week in the confines of a cramped IT lab.

But I am most thankful to my kind and loving family, who provided the environment

which made all of this possible. My mother and father, Jayne and Brian, deserve a great

deal of credit for my success, having nurtured my curiosity from a young age and having

done all they could to allow me to spread my wings. My brother, Josh, has instigated

vi



many an interesting philosophical conversation, and has humoured my many ramblings about

alternative systems of logic and non-Euclidean geometries. Nathan Somers, while not family

by blood, has been a close friend, ally, and confidante throughout most of my life. You have

seen me through many highs and lows, and have provoked in me a love of linguistics and its

mathematical connections.

And Miranda, my dearest love, closest companion, and the newest addition to my family,

has been by my side at all times throughout this most challenging leg of my journey. You

have taught me confidence and resolve, and have given me the strength to carry on in the

face of Sisyphean adversity. You have pushed me when I have faltered, held me when I have

buckled, and picked me up when I have fallen. Without you I am not sure I would be in this

position today. I thank you sincerely.

The results in Chapter 3 appear as an appendix to [ABD21], and the results in Chapter

4 appear in [BR20].

vii



Contents

List of Figures xi

1 Introduction 1

1.1 Contributions of the author . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Hierarchical hyperbolicity of graph products . . . . . . . . . . . . . . 5

1.1.2 Almost hierarchical hyperbolicity implies hierarchical hyperbolicity . 9

1.1.3 Non-positive curvature in graph braid groups . . . . . . . . . . . . . 10

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15

2.1 Coarse geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Graph terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Relative hyperbolicity and thickness . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Relative hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Thickness and divergence . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Acylindrical hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Cube complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Right-angled Artin groups . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Right-angled Coxeter groups . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Graph braid groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



2.6 Quasi-median graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.1 Graph products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Hierarchical hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7.1 Detecting other forms of hyperbolicity in HHSs . . . . . . . . . . . . 64

2.7.2 Relative HHSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7.3 Almost HHSs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.7.4 HHS structures on CAT(0) cube complexes . . . . . . . . . . . . . . . 68

3 Almost HHSs are HHSs 72

4 Hierarchical hyperbolicity of graph products 84

4.1 The proto-hierarchy structure on a graph product . . . . . . . . . . . . . . . 85

4.1.1 The index set, associated spaces, and projections. . . . . . . . . . . . 85

4.1.2 The relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.3 The proto-hierarchy structure . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Graph products are relative HHGs . . . . . . . . . . . . . . . . . . . . . . . 102

4.2.1 Hyperbolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.2 Finite complexity and containers . . . . . . . . . . . . . . . . . . . . 109

4.2.3 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.4 Bounded geodesic image and large links . . . . . . . . . . . . . . . . . 114

4.2.5 Partial realisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2.6 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2.7 Compatibility of the group structure . . . . . . . . . . . . . . . . . . 121

4.2.8 Graph products are relative HHGs . . . . . . . . . . . . . . . . . . . 122

4.2.9 The syllable metric is an HHS . . . . . . . . . . . . . . . . . . . . . . 126

4.3 Some applications of hierarchical hyperbolicity . . . . . . . . . . . . . . . . . 127

4.3.1 Graph products of HHGs . . . . . . . . . . . . . . . . . . . . . . . . . 128

ix



4.3.2 Meier’s condition for hyperbolicity . . . . . . . . . . . . . . . . . . . 136

4.3.3 Genevois’ minsquare electrification. . . . . . . . . . . . . . . . . . . . 138

5 Non-positive curvature in graph braid groups 144

5.1 The hierarchically hyperbolic structure on a graph braid group . . . . . . . . 145

5.1.1 The cubical structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.1.2 The HHG structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Detecting other forms of hyperbolicity in a graph braid group . . . . . . . . 153

5.2.1 Hyperbolicity and acylindrical hyperbolicity . . . . . . . . . . . . . . 154

5.2.2 Relative hyperbolicity and thickness . . . . . . . . . . . . . . . . . . . 157

Bibliography 165

x



List of Figures

1.1 Non-positive curvature in pZˆ Zq ˚ Z . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A 3–braid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 An induced subgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 A cycle and a star graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 The link and star of a vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 A cube complex that is not non-positively curved . . . . . . . . . . . . . . . 27

2.5 Self-osculation and inter-osculation . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 A geodesic triangle in the contact graph gives a loop in X . . . . . . . . . . 34

2.7 Case 1 of the proof of hyperbolicity of the contact graph . . . . . . . . . . . 35

2.8 Case 2 of the proof of hyperbolicity of the contact graph . . . . . . . . . . . 36

2.9 Case 3 of the proof of hyperbolicity of the contact graph . . . . . . . . . . . 37

2.10 Case 4 of the proof of hyperbolicity of the contact graph . . . . . . . . . . . 38

2.11 The induction procedure on hyperplanes dual to a geodesic segment . . . . . 38

2.12 The graphs K´
4 and K3,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.13 The triangle and quadrangle conditions . . . . . . . . . . . . . . . . . . . . . 48

2.14 Examples of mid-prisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.15 A hyperplane inside its carrier, and an associated combinatorial hyperplane . 55

4.1 A branching hyperplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi



4.2 Hyperplanes crossing between two geodesics . . . . . . . . . . . . . . . . . . 94

4.3 Pushing a hyperplane crossing outside a geodesic . . . . . . . . . . . . . . . 95

4.4 A hyperplane separating two points from their projections . . . . . . . . . . 100

4.5 Re-ordering hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Replacing a geodesic triangle in CpgΛq with a loop in SpgΛq . . . . . . . . . 104

4.7 An outermost hyperplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.8 Following a sequence of combinatorial hyperplanes . . . . . . . . . . . . . . . 107

4.9 Projecting between nested domains . . . . . . . . . . . . . . . . . . . . . . . 115

4.10 Behaviour of hyperplanes crossing transverse domains . . . . . . . . . . . . . 120

5.1 An unordered combinatorial configuration space . . . . . . . . . . . . . . . . 146

xii



To Jayne and Brian. For encouraging me to follow my passions no matter where they

might lead, and supporting me unconditionally every step of the way.

xiii



We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.
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Chapter 1

Introduction

While groups have long been used as a tool for studying geometry—for example, the study

of Kleinian groups dates back to Klein and Poincaré in the 1880s—the use of geometry to

study groups is a much more recent endeavour. This area, known as geometric group theory,

was studied by a number of authors in the 20th century such as Dehn, Milnor–Švarc, and

Bass–Serre, but did not become recognisable as a field in its own right until the publication

of two seminal papers by Gromov [Gro87, Gro93]. In these, he detailed a programme for

the study of group theory from the point of view of a collection of natural discrete metrics

associated to any finitely generated group. These so-called word metrics measure distance

between two elements g and h of a group G by counting the number of elements required to

express the difference g´1h as a product of generators of G and their inverses.

One must beware that a group can have many word metrics, depending on the choice

of generating set. However, so long as these generating sets are finite, the distances with

respect to any two word metrics are equivalent up to a multiplicative and additive constant;

we say the metric spaces are quasi-isometric. By restricting ourselves to geometric properties

that are invariant under quasi-isometry, we therefore obtain invariants of the group itself,

independent of the choice of generating set.

The discreteness of this geometry bars one from utilising the traditional techniques of

1



Riemannian geometry. Nonetheless, there are ways of developing analogues of classical Rie-

mannian concepts which make sense in this discrete setting. This is primarily achieved by

studying the Cayley graphs of a finitely generated group G, defined by representing elements

of G by vertices and connecting two vertices by an edge whenever the corresponding elements

differ by a generator. By assigning each edge a length of 1, we see that these Cayley graphs

are quasi-isometric to the group G with the corresponding word metrics. Moreover, the

Cayley graphs can be viewed as geodesic metric spaces, granting access to a greater range

of geometric tools.

For example, one of Gromov’s most influential contributions to geometric group theory

was through the development of the concept of hyperbolicity of a group. By mimicking the

‘thin’ appearance of triangles in hyperbolic Riemannian manifolds, one is able to develop

a version of hyperbolicity that can be applied to any geodesic metric space, and thus in

particular to Cayley graphs. Specifically, a geodesic metric space is defined to be δ–hyperbolic

if every geodesic triangle satisfies the condition that each side is contained in the union of

the δ–neighbourhoods of the other two sides. A group is then defined to be hyperbolic if its

Cayley graphs are hyperbolic.

Surprisingly, this simple condition is sufficient to capture many aspects of negative cur-

vature seen in the Riemannian setting. For example, one can develop a discrete analogue

of volume by counting the number of group elements contained in a ball of a given radius.

In a hyperbolic group, this volume is seen to grow exponentially with the radius of the

ball. Finitely presented hyperbolic groups can also be shown to satisfy a linear isoperimetric

inequality, with the appropriate analogues of perimeter and area.

Hyperbolic groups are seen in a wide variety of places. For example, finite groups, free

groups, small cancellation groups, and fundamental groups of closed hyperbolic manifolds

are hyperbolic. In fact, hyperbolicity is in some sense ubiquitous among groups; by studying

random groups, Gromov and Ol’shanskii show that almost every finitely presented group is

2



hyperbolic [Gro93, Ol’92]. Despite this, there are many interesting and important classes of

groups that are not hyperbolic in the strictly homogeneous sense required by δ–hyperbolicity,

but do exhibit some hyperbolic behaviour. There have therefore been many attempts to

generalise the definition of hyperbolicity in order to capture this.

One of the first such generalisations was that of relative hyperbolicity, suggested by Gro-

mov himself and improved upon by Farb, Bowditch, and others [Gro87, Far98, Bow12,

DS05, Osi06]. Another example is acylindrical hyperbolicity, developed by Osin by build-

ing upon ideas of Sela and Bowditch [Osi16, Sel97, Bow08]. The primary focus of this

thesis, however, shall be hierarchical hyperbolicity, developed by Behrstock, Hagen, and

Sisto [BHS17b, BHS19] as a way of describing hyperbolic behaviour in quasi-geodesic metric

spaces via machinery akin to that introduced for mapping class groups by Masur and Minsky

[MM99, MM00].

The work of Behrstock, Hagen, and Sisto originally focused on developing such machin-

ery for right-angled Artin groups, but hierarchical hyperbolicity also provides a common

framework in which to study a wide variety of other groups and spaces. Prominent exam-

ples include virtually cocompact special groups and most CAT(0) cube complexes [BHS17b],

fundamental groups of closed 3–manifolds with no Nil or Sol components in their prime

decomposition [BHS19], Teichmüller space with either the Teichmüller metric or the Weil–

Petersson metric ([Raf07, Dur16, EMR17] and [Bro03, Beh06, BKMM12] respectively), and

graph products of hyperbolic groups [BR18].

Hierarchical hyperbolicity has deep geometric consequences for a space, including a Masur

and Minsky style distance formula [BHS19], a quadratic isoperimetric inequality [BHS19],

rank rigidity and Tits alternative theorems [DHS17, DHS19], control over top-dimensional

quasi-flats [BHS17c], and bounds on the asymptotic dimension [BHS17a]. Moreover, the rich

structure afforded by hierarchical hyperbolicity also allows one to detect the presence of other

forms of hyperbolicity, such as δ–hyperbolicity [BHS17c], relative hyperbolicity [Rus20], and

3



acylindrical hyperbolicity [BHS17b].

A hierarchically hyperbolic structure on a quasi-geodesic space X is a collection of uni-

formly hyperbolic spaces CpW q indexed by the elements W of an index set S. For each

W P S, there is a projection map from X onto the hyperbolic space CpW q, and every pair of

elements of S is related by one of three mutually exclusive relations: orthogonality, nesting,

and transversality. This data then satisfies a collection of axioms that allow for the geome-

try of the entire space to be recovered from the projections to the hyperbolic spaces CpW q.

Furthermore, this structure encodes non-positive curvature occurring in the space; we obtain

information about hyperbolic aspects of X through the projections to the hyperbolic spaces

CpW q, while flats (copies of Zn) in X are encoded by the orthogonality relation.

Figure 1.1: The right-angled Artin group pZ ˆ Zq ˚ Z can be endowed with a hierarchically
hyperbolic structure. Its Cayley graph (centre) contains both Euclidean planes and copies
of the Cayley graph of the hyperbolic group Z ˚ Z (left).

1.1 Contributions of the author

The original contributions of this thesis focus on three topics, based on three pieces of work

the author has produced during his graduate studies. Two of these are joint projects with

Jacob Russell, which have resulted in a joint paper [BR20] and an appendix to a paper of

Carolyn Abbott, Jason Behrstock, and Matthew Durham [ABD21]. The three pieces of work

are summarised below.
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1.1.1 Hierarchical hyperbolicity of graph products

In Chapter 4 we construct an explicit hierarchically hyperbolic structure for any graph

product, generalising the standard hierarchically hyperbolic structures on right-angled Artin

groups. Given a finite simplicial graph Γ with vertex set V pΓq and edge set EpΓq, we define

the right-angled Artin group AΓ by

AΓ “ xV pΓq | rv, ws “ e @ tv, wu P EpΓqy.

More generally, if we associate to each vertex v of Γ a finitely-generated group Gv, then we

define the graph product GΓ by

GΓ “

˜

˚
vPV pΓq

Gv

¸O

xxrgv, gws | gv P Gv, gw P Gw, tv, wu P EpΓqyy ,

so that AΓ is obtained as the special case where the vertex groups are Gv “ Z for all v P V pΓq.

For right-angled Artin groups AΓ, a hierarchically hyperbolic structure was constructed

by Behrstock, Hagen, and Sisto in [BHS17b] using the collection of induced subgraphs of

the defining graph Γ, in the following way. Each induced subgraph Λ of Γ generates a new

right-angled Artin group AΛ, which is realised as a subgroup of AΓ. The Cayley graph of AΓ

is the 1–skeleton of a CAT(0) cube complex X, which comes equipped with a projection to

a hyperbolic space CpXq called the contact graph. Since each subgraph Λ of Γ generates its

own right-angled Artin group with associated cube complex Y Ď X, the subgroup AΛ has

its own associated contact graph CpY q. Since edges of Γ correspond to commuting relations

in AΓ, join subgraphs of Γ (that is, subgraphs of the form Λ1 \ Λ2 where every vertex of Λ1

is joined by an edge to every vertex of Λ2) generate direct product subgroups of AΓ. This

provides us with an intuitive notion of orthogonality within our hierarchy. Set containment

of subgraphs of Γ provides a natural partial order in the hierarchy, which we call nesting,

and any subgraphs that are not orthogonal or nested are considered transverse. Collectively,
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the hyperbolic spaces CpY q allow us to recover the entire geometry of AΓ, via projections to

the subcomplexes Y Ď X and through the nesting, orthogonality and transversality relations

defined above.

Since the nesting and orthogonality relations for a right-angled Artin group are intrinsic

to the defining graph Γ, it is sensible to attempt to generalise this hierarchichally hyperbolic

structure to arbitrary graph products. It is important to note, however, that arbitrary

graph products cannot be hierarchically hyperbolic, since we have no control over the vertex

groups. For example, the vertex groups could be copies of OutpF3q, which is known not

to be hierarchically hyperbolic [BHS19]. However, this is the only roadblock. Specifically,

we show that graph products are relatively hierarchically hyperbolic, that is, graph products

admit a structure satisfying all of the axioms of hierarchical hyperbolicity with the exception

that the spaces associated to the nesting-minimal sets (the vertex groups) are not necessarily

hyperbolic.

Theorem A ([BR20, Theorem 4.22]). Let Γ be a finite simplicial graph, with each vertex v

labelled by a non-trivial finitely-generated group Gv. The graph product GΓ is a hierarchically

hyperbolic group relative to the vertex groups.

The notion of relative hierarchical hyperbolicity was originally developed by Behrstock,

Hagen and Sisto in [BHS19] and is explored further in [BHS17a]. Despite the lack of hyper-

bolicity in the nesting-minimal sets, many of the consequences of hierarchical hyperbolicity

are preserved in the relatively hierarchically hyperbolic setting. In particular, Theorem A

implies the graph product GΓ has a Masur and Minsky style distance formula and an acylin-

drical action on the nesting-maximal hyperbolic space; see Corollaries 4.2.23 and 4.2.24.

Another way of asserting control over the vertex groups is by replacing the word metric

on GΓ with the syllable metric, which measures the length of an element g P GΓ by counting

the minimum number of elements needed to express g as a product of vertex group ele-

ments. This has the effect of making all vertex groups diameter 1, and therefore hyperbolic.
6



The syllable metric on a right-angled Artin group was studied by Kim and Koberda as an

analogue of the Weil–Petersson metric on Teichmüller space (the Weil–Petersson metric is

quasi-isometric to the space obtained from the mapping class group by coning off all cyclic

subgroups generated by Dehn twists) [KK14]. Kim and Koberda produce several hierarchy-

like results for the syllable metric on a right-angled Artin group with triangle- and square-free

defining graph, including a Masur and Minsky style distance formula and an acylindrical ac-

tion on a hyperbolic space. This inspired Behrstock, Hagen and Sisto to ask if the syllable

metric on a right-angled Artin group is a hierarchically hyperbolic space [BHS19]. We give

a positive answer to this question, not just for right-angled Artin groups but for all graph

products.

Corollary B ([BR20, Corollary 4.25]). Let Γ be a finite simplicial graph, with each vertex

v labelled by a non-trivial group Gv. Then the graph product GΓ endowed with the syllable

metric is a hierarchically hyperbolic space.

To prove Theorem A and Corollary B, we utilise techniques developed by Genevois and

Martin in [Gen17, GM18] which exploit the cubical-like geometry of a graph product when

endowed with the syllable metric. This allows us to adapt proofs from the right-angled Artin

group case, which rely heavily on geometric properties of cube complexes. While the syllable

metric does not appear in the statement of Theorem A, it is an integral part of the proof,

acting as a middle ground where geometric computations are performed before projecting to

the associated hyperbolic spaces. This also allows Theorem A and Corollary B to be proved

essentially simultaneously.

Our primary application of Theorem A is showing that a graph product of hierarchically

hyperbolic groups is itself hierarchically hyperbolic. This gives a positive answer to another

question of Behrstock, Hagen, and Sisto [BHS19, Question D].

Theorem C ([BR20, Theorem 5.1]). Let Γ be a finite simplicial graph, with each vertex v

labelled by a non-trivial group Gv. If each Gv is a hierarchically hyperbolic group, then the
7



graph product GΓ is a hierarchically hyperbolic group.

Berlai and Robbio have established a combination theorem for graphs of groups that

implies Theorem C when the vertex groups satisfy some natural, but non-trivial, additional

hypotheses [BR18]. For the specific case of graph products, Theorem C improves upon

Berlai and Robbio’s result by removing the need for these additional hypotheses, as well as

providing an explicit description of the hierarchically hyperbolic structure in terms of the

defining graph.

We also use our relatively hierarchically hyperbolic structure for graph products to answer

two questions of Genevois about a new quasi-isometry invariant for graph products of finite

groups called the electrification of GΓ. Graph products of finite groups form a particularly

interesting class, as they include right-angled Coxeter groups and are the only cases where the

syllable metric and word metric are quasi-isometric. Genevois defines the electrification EpΓq

of a graph product of finite groups to be the graph whose vertices correspond to elements

of GΓ, and where g, h P GΓ are joined by an edge in EpΓq whenever g´1h P GΛ ď GΓ

and Λ is a minsquare subgraph of Γ, that is, a minimal subgraph that contains opposite

vertices of a square if and only if it contains the whole square. Motivated by an analogy

with relatively hyperbolic groups, Genevois proved that any quasi-isometry between graph

products of finite groups induces a quasi-isometry between their electrifications, and used

this invariant to distinguish several quasi-isometry classes of right-angled Coxeter groups

[Gen19b]. Geometrically, the electrification sits between the syllable metric on GΓ and the

nesting-maximal hyperbolic space in our hierarchically hyperbolic structure on GΓ. We

exploit this situation to classify when the electrification has bounded diameter and when it

is a quasi-line, answering Questions 8.3 and 8.4 of [Gen19b].

Theorem D ([BR20, Theorems 5.14, 5.16]). Let GΓ be a graph product of finite groups and

let EpΓq be its electrification.

1. EpΓq has bounded diameter if and only if Γ is either a complete graph, a minsquare
8



graph, or the join of minsquare graph and a complete graph.

2. EpΓq is a quasi-line if and only if GΓ is virtually cyclic.

As a final application of Theorem A, we give a new proof of Meier’s classification of

hyperbolicity of graph products [Mei96].

1.1.2 Almost hierarchical hyperbolicity implies hierarchical hyper-

bolicity

The concept of an almost hierarchically hyperbolic space was introduced by Abbott, Behr-

stock, and Durham as a generalisation of hierarchical hyperbolicity [ABD21]. This a priori

broader class of spaces is obtained by relaxing the container axiom, which requires that for

each element W in a hierarchically hyperbolic structure S there is a corresponding element

of S which contains everything orthogonal to W .

The proof of Theorem C requires the hierarchically hyperbolic structures of the vertex

groups to be stitched into the fabric of the relatively hierarchically hyperbolic structure given

by Theorem A, by first removing the nesting-minimal domains in the relative structure and

then replacing them with the structures of the vertex groups. This causes one notable

problem, however; this new structure does not satisfy the container axiom, providing us only

with an almost hierarchically hyperbolic structure.

In Chapter 3 we fix this problem by showing that any almost hierarchically hyperbolic

structure can be upgraded to a genuine hierarchically hyperbolic structure by adding a

collection of dummy domains to serve as containers.

Theorem E ([ABD21, Theorem A.1]). Any almost hierarchically hyperbolic space can be

endowed with the structure of a hierarchically hyperbolic space.

This allows us to complete the proof of Theorem C, while also streamlining proofs in

[ABD21] by removing the need to navigate the subtleties of almost hierarchical hyperbolicity.
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1.1.3 Non-positive curvature in graph braid groups

Given a topological space X, one can construct the configuration space CnpXq of n particles

on X by taking the direct product of n copies of X and removing the diagonal. Informally,

this space tracks the movement of the particles through X; removing the diagonal ensures

the particles do not collide. One then obtains the unordered configuration space UCnpXq by

taking the quotient by the action of the symmetric group on the coordinates of Xn. Finally,

the braid group BnpXq is defined to be the fundamental group of UCnpXq.

Braid groups have been a popular object of study since they were first introduced by

Artin in 1926 [Art26]. Originally, these were studied geometrically as knots; see Figure 1.2.

One can obtain the configuration space interpretation from this geometric model by taking

horizontal cross-sections, each of which gives an arrangement of particles on a disc. Each

cross-section can be thought of as a snapshot in time, tracking the locations of the particles

as they weave between each other. This configuration space approach was first introduced

by Fox [Fox62].

Figure 1.2: A 3–braid.

Classically, the space X is taken to be a disc, as in the above example. However, one may

also study braid groups of other spaces. Taking X to be a manifold, Birman showed that

braid groups are trivial in dimensions 3 and higher [Bir69, Theorem 1], therefore much work

on braid groups is concentrated on the case where X is a surface. However, by weakening

the manifold assumption, one also obtains interesting braid groups in dimension 1, namely

those of graphs.

These so-called graph braid groups were first developed by Abrams [Abr00], who showed
10



that they can be expressed as fundamental groups of non-positively curved cube complexes.

Results of Genevois show that these cube complexes are in fact special [Gen19a], in the sense

of Haglund and Wise [HW08]. By applying Behrstock–Hagen–Sisto’s result that special cube

complexes are hierarchically hyperbolic, it follows that BnpΓq is a hierarchically hyperbolic

group, but this structure does not admit a nice description in terms of Γ.

In Chapter 5, we construct an explicit hierarchically hyperbolic structure on a graph

braid group BnpΓq. By expressing this structure in terms of the graph Γ, we are able

to characterise when a graph braid group exhibits other aspects of non-positive curvature

in terms of properties of Γ. For example, we are able to apply Behrstock–Hagen–Sisto’s

bounded orthogonality criterion [BHS17c, Corollary 2.16] to classify hyperbolicity of graph

braid groups. A version of this theorem was first proved by Genevois [Gen19a, Theorem 4.1].

Theorem F. A graph braid group BnpΓq is hyperbolic if and only one of the following holds.

(1) n “ 1.

(2) n “ 2 and Γ does not contain two disjoint cycle subgraphs.

(3) n “ 3 and Γ does not contain two disjoint cycle subgraphs, nor does it contain a disjoint

star subgraph and cycle subgraph.

(4) n ě 4 and Γ does not contain two disjoint subgraphs, each of which is a star or a cycle.

We are able to recover another theorem of Genevois [Gen19a] by applying Behrstock–

Hagen–Sisto’s criteria for acylindrical hyperbolicity in hierarchically hyperbolic groups.

Theorem G. Let Γ be a finite connected graph. The graph braid group BnpΓq is either cyclic

or acylindrically hyperbolic.

Finally, we conjecture and partially prove a similar classification result for relative hy-

perbolicity of graph braid groups. This would answer a question of Genevois, generalising

his characterisation of toral relative hyperbolicity [Gen19a]. We achieve this by applying
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Russell’s isolated orthogonality criterion [Rus20], which allows one to determine if a hi-

erarchically hyperbolic space is relatively hyperbolic. Moreover, by adapting techniques

developed by Levcovitz in his classification of right-angled Coxeter groups [Lev20], we show

that one can simultaneously characterise when a graph braid group is strongly thick. In-

troduced by Behrstock–Druţu–Mosher as an obstruction to relative hyperbolicity [BDM09]

and further developed by Behrstock–Druţu [BD14], thickness measures the complexity of

coarse intersection patterns of non-negatively curved regions of a space. Thickness comes in

various orders, with each order being a quasi-isometry invariant. It is conjectured that all

hierarchically hyperbolic groups are thick or relatively hyperbolic; we seek to confirm this in

the case of graph braid groups.

Following [Lev20], we introduce a sequence of hypergraphs which encode collections of

mutually orthogonal domains arising in the hierarchically hyperbolic structure of a graph

braid group BnpΓq. By analysing connectedness properties of these hypergraphs via the

so-called hypergraph index and applying Russell’s isolated orthogonality criterion, we claim

that it is possible to determine whether the graph braid group is relatively hyperbolic. By

construction, our hypergraphs show that any graph braid group which does not satisfy the

isolated orthogonality criterion is in fact strongly thick, and moreover we obtain an upper

bound on the order of thickness.

Conjecture H. Let Γ be a finite connected graph and let n ě 1, k ě 0 be integers.

(1) If BnpΓq has hypergraph index k, then BnpΓq is strongly thick of order at most k. In

particular, BnpΓq is not relatively hyperbolic.

(2) If BnpΓq has hypergraph index 8, then BnpΓq is relatively hyperbolic.

Behrstock and Druţu show that one can obtain a lower bound on the order of strong

thickness of a space by studying its divergence [BD14]. Levcovitz uses this to give a precise

characterisation of orders of strong thickness of right-angled Coxeter groups, employing
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disc diagram techniques to measure divergence [Lev20]. By adapting these techniques to

the setting of graph braid groups, we conjecture that the results of Conjecture H can be

strengthened even further.

Conjecture I. BnpΓq has hypergraph index k if and only if it is strongly thick of order k.

1.2 Outline of the thesis

In Chapter 2 we lay the foundations for the main results in Chapters 3, 4, and 5. We

begin with a quick overview of the basic concepts from coarse geometry (Section 2.1), in-

cluding a glossary of some important graph theoretic terms (Section 2.1.1), followed by a

brief summary of relative hyperbolicity and thickness (Section 2.2) as well as acylindrical

hyperbolicity (Section 2.3). We then give a more in-depth analysis of the geometry of cube

complexes (Section 2.4), including a new proof of hyperbolicity of the contact graph (Theo-

rem 2.4.16). Cube complexes are an important prerequisite for our approach to graph braid

groups (Section 2.5) and a motivation for the study of quasi-median graphs (Section 2.6).

Quasi-median graphs in turn form the basis for the geometry of graph products (Section

2.6.1), which are a generalisation of right-angled Artin groups (Section 2.4.1) and right-

angled Coxeter groups (Section 2.4.2). We conclude the chapter by formally introducing

the concept of hierarchical hyperbolicity (Section 2.7), which underpins the majority of the

results of this thesis. We spend some time developing this theory, reviewing methods of

detecting other forms of hyperbolicity in hierarchically hyperbolic spaces (Section 2.7.1) and

introducing two important variants—relative hierarchical hyperbolicity (Section 2.7.2) and

almost hierarchical hyperbolicity (Section 2.7.3)—as well as delving into the details of hi-

erarchically hyperbolic structures on certain CAT(0) cube complexes (Section 2.7.4), which

will be key to understanding hierarchically hyperbolic structures on both graph products

and graph braid groups.

13



Chapter 3 is devoted primarily to the proof of Theorem E, showing that any almost

hierarchically hyperbolic structure can be promoted to a hierarchically hyperbolic structure.

We conclude the chapter with a description of how this result is applied in the paper of

Abbott, Behrstock, and Durham.

In Chapter 4 we set about proving our theorems on graph products. In Section 4.1, we

set up our proof of the relative hierarchical hyperbolicity of graph products by defining the

necessary spaces, projections, and relations. In Section 4.2, we show the spaces, projections,

and relations defined in Section 4.1 satisfy the axioms of a relative HHG (or non-relative HHS

in the case of the syllable metric). This completes the proofs of Theorem A and Corollary

B. Section 4.3 is devoted to applications of this hierarchically hyperbolic structure. We

start by proving graph products of HHGs are HHGs (Theorem C) in Section 4.3.1, which

requires the technical results shown in Chapter 3. In Section 4.3.2, we record our proof of

Meier’s hyperbolicity criteria and in Section 4.3.3, we classify when Genevois’ electrification

has infinite diameter and when it is a quasi-line, proving Theorem D.

Finally, Chapter 5 contains our results on graph braid groups. We spend Section 5.1

constructing an explicit hierarchically hyperbolic structure for graph braid groups, first by

studying the cubical structure and how it relates to properties of the graph (Section 5.1.1) and

then translating this into a hierarchically hyperbolic structure (Section 5.1.2). We then apply

this hierarchically hyperbolic structure in Section 5.2 to detect other forms of hyperbolicity.

In particular, we classify when a graph braid group is hyperbolic or acylindrically hyperbolic

(Section 5.2.1), proving Theorems F and G. We then introduce the notion of the hypergraph

index in Section 5.2.2 and use this to partially prove Conjecture H, which characterises when

a graph braid group is relatively hyperbolic or thick.
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Chapter 2

Background

Notation 2.0.1. We set the following conventions for the notation we shall use.

• Given a metric space X, BxpRq denotes the ball of radius R centred at the point x.

• Given a metric space X and a subspace A Ď X, NRpAq denotes the closed R–

neighbourhood of the subspace A.

• The identity element of a group is denoted e.

• N denotes the positive integers.

• The set of vertices of a graph Γ is denoted V pΓq and the set of edges is denoted EpΓq.

2.1 Coarse geometry

In this section we shall review some basic tools of geometric group theory which will be used

throughout this thesis. The first and foremost tool is the Cayley graph of a group, which is

the primary method of studying a group’s geometry. This graph allows one to put a natural

discrete metric on any finitely generated group. Due to the discrete nature of this form of

geometry, it is often referred to as coarse geometry.
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Definition 2.1.1 (Cayley graph, word metric). Let G be a group and let S be a generating

set for G. The Cayley graph CaypG,Sq of G with respect to S is the graph whose vertices

are the elements of G, and where two vertices g and h are connected by an edge if and only

if g´1h “ s for some s P S Y S´1. In this case, we label the edge by s. The word metric dS

on G with respect to S is the graph metric on CaypG,Sq; that is, dSpg, hq is equal to the

shortest distance between the vertices g and h in CaypG,Sq, where each edge has length 1.

The geometry of the Cayley graph CaypG,Sq is intimately related to algebraic properties

of the group G. For example, the distance between two elements g, h P G in the word metric

dS is equal to the minimum number of elements required to express g´1h as a product of

elements of SYS´1. One must beware that a group can have many Cayley graphs, depending

on the choice of generating set, meaning this geometry is not fully determined by the choice

of group G. However, so long as these generating sets are finite, the distances in any two

Cayley graphs are equivalent up to a multiplicative and additive constant; we say the Cayley

graphs are quasi-isometric. By restricting ourselves to geometric properties of Cayley graphs

that are invariant under quasi-isometry, we therefore obtain genuine invariants of the group

itself.

Definition 2.1.2 (Coarsely Lipschitz, quasi-isometry). Let pX, dXq and pY, dY q be metric

spaces and let L ě 1, C ě 0. A function f : X Ñ Y is said to be pL,Cq–coarsely Lipschitz

if for all x, x1 P X, we have

dY pfpxq, fpx1qq ď LdXpx, x1q ` C.

A function f : X Ñ Y is an pL,Cq–quasi-isometric embedding if for all x, x1 P X, we have

1

L
dXpx, x1q ´ C ď dY pfpxq, fpx1qq ď LdXpx, x1q ` C.

If in addition Y Ď NCpfpXqq, we say f is an pL,Cq–quasi-isometry. Two metric spaces
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pX, dXq and pY, dY q are said to be quasi-isometric if there exists a quasi-isometry f : X Ñ Y

between them.

In light of this, the appropriate coarse geometric analogue of a geodesic is a quasi-geodesic,

defined as a quasi-isometric embedding of a closed interval I Ď R.

Definition 2.1.3 (Quasi-geodesic). Let X be a metric space. An pL,Cq–quasi-geodesic in

X is an pL,Cq–quasi-isometric embedding γ : I Ñ X for some closed interval I Ď R. In

particular, if L “ 1 and C “ 0 then γ is a geodesic. We say X is an pL,Cq–quasi-geodesic

space if for any two points x, x1 P X there exists an pL,Cq–quasi-geodesic γ : r0, ls Ñ X such

that γp0q “ x and γplq “ x1.

This leads to a natural coarse version of convexity.

Definition 2.1.4 (Quasi-convex). A subset A of a metric space X is pL,Cq–quasi-convex if

any two points in A can be connected in NCpAq by an pL,Lq–quasi-geodesic.

Example 2.1.5. The following three examples of quasi-isometries will be critical to our

understanding of the coarse geometry of groups.

(1) The group Zn with the word metric induced by its standard generating set is quasi-

isometric to Euclidean n–space. For this reason, we often refer to quasi-isometrically

embedded copies of Zn in a group G as flats in the group.

(2) A finitely generated group G is quasi-isometric to any finite index subgroup H ď G. For

this reason, we shall often speak of a group virtually having a property. This simply

means there is a finite index subgroup which has this property.

(3) (Milnor–Švarc Lemma.) Let G be a group acting properly discontinuously and co-

compactly on a proper geodesic metric space X. Then G is finitely generated and

quasi-isometric to X. We say G acts geometrically on X.
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Note that the fact that any two Cayley graphs of a finitely generated group G are quasi-

isometric follows as a consequence of the Milnor–Švarc lemma, by considering the action of

G on these two metric spaces.

With the notion of quasi-isometry in mind, we can now begin producing geometric group

invariants by finding properties which are invariant under quasi-isometry. One such invariant

is a coarse version of hyperbolicity, originally introduced by Gromov in [Gro87] and now a

cornerstone of geometric group theory.

Definition 2.1.6 (δ–hyperbolic). Let X be a (quasi-)geodesic space and let δ ą 0. We say

X is δ–hyperbolic if every (quasi-)geodesic triangle in X satisfies the property that any side

is contained in the δ–neighbourhood of the union of the other two sides.

Hyperbolic spaces have a number of nice properties. For example, hyperbolic spaces have

a natural notion of boundary.

Definition 2.1.7 (Gromov boundary). Let X be a proper geodesic hyperbolic space and

fix a point O P X. Define two geodesic rays γ1 : r0,8q Ñ X and γ2 : r0,8q Ñ X with

γ1p0q “ γ2p0q “ O to be equivalent if there exists some K ě 0 such that dXpγ1ptq, γ2ptqq ď K

for all t ě 0. Denote the equivalence class of a geodesic ray γ by rγs. The Gromov boundary

BX of X is defined to be the set of equivalence classes BX “ trγs | γ is a geodesic ray in Xu.

Given a group G acting on a hyperbolic space X, one can study the behaviour of orbits

of elements g P G.

Definition 2.1.8 (Loxodromic). An element g is said to be loxodromic if the map Z Ñ X

defined by n ÞÑ gnx is a quasi-isometry for some (equivalently, any) x P X. In particular,

the orbits of g in X form quasi-geodesics, with precisely two limit points in BX. We say two

loxodromic elements g, h P G are independent if they do not share any limit points.
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2.1.1 Graph terminology

Graphs prove to be highly useful tools in geometric group theory, even outside of the specific

example of the Cayley graph, by giving us powerful ways of keeping track of combinatorial

data. As such, it shall be useful to review some concepts from graph theory.

Definition 2.1.9 (Simplicial). Let Γ be a graph. We say Γ is simplicial if no two edges

connect the same pair of vertices and no edge both begins and ends at the same vertex.

That is, every edge of Γ may be expressed uniquely as an unordered pair tv, wu of distinct

vertices of Γ corresponding to its endpoints.

Definition 2.1.10 (Induced subgraph). Let Γ be a graph and let Λ Ď Γ be a subgraph of

Γ. We say Λ is an induced subgraph of Γ if the edges of Λ are precisely the edges of Γ whose

endpoints are vertices of Λ.

Figure 2.1: The red square on the left is not an induced subgraph, as it does not contain the
diagonal edge. The subgraph on the right is an induced subgraph.

Definition 2.1.11 (Cycle, tree). Let Γ be a graph. A cycle in Γ is a sequence of distinct

vertices v1, . . . , vn such that vi and vi`1 are connected by an edge for each 1 ď i ă n, and vn

is connected to v1 by an edge. A cycle also refers to the subgraph of Γ given by the union

of these vertices and edges. We say Γ is a tree if it is connected and contains no cycles.

Definition 2.1.12 (Star graph). A connected graph Γ is a star graph if it consists of one

vertex of valence m ě 3 and m vertices of valence 1.
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Figure 2.2: A cycle and a star graph.

Definition 2.1.13 (Complete, clique). A simplicial graph Γ is complete if every pair of

vertices of Γ is connected by an edge. An induced subgraph Λ of a simplicial graph Γ is

called a clique if Λ is a complete subgraph of Γ.

Definition 2.1.14 (Star, link, and join). Let Γ be a simplicial graph and Λ an induced

subgraph of Γ. The link of Λ, denoted lkpΛq, is the subgraph of Γ induced by the set of

vertices of Γ r Λ that are connected to every vertex of Λ. The star of Λ, denoted stpΛq, is

Λ Y lkpΛq. We say Λ is a join if it can be written as Λ “ Λ1 \ Λ2 where Λ1 and Λ2 are

non-empty induced subgraphs of Γ and every vertex of Λ1 is connected to every vertex of

Λ2. We denote the join of Λ1 and Λ2 by Λ1 ‹ Λ2. In particular, stpΛq is the join Λ ‹ lkpΛq.

v v
lkpvq stpvq

Figure 2.3: The link and star of a vertex.

Generalising the idea that edges in a simplicial graph are represented by unordered pairs

of vertices, one can develop a notion of a hypergraph, which has ‘hyperedges’ consisting of

unordered collections of any number of vertices.

Definition 2.1.15 (Hypergraph). A hypergraph Γ is a set of vertices V pΓq and a set of

hyperedges EpΓq, where each hyperedge E P EpΓq is a subset of V pΓq.
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2.2 Relative hyperbolicity and thickness

2.2.1 Relative hyperbolicity

There are many interesting and important classes of groups that are not hyperbolic in the

homogeneous sense of δ–hyperbolicity, but do still exhibit some hyperbolic behaviour. One

of the first attempts to capture this was the notion of relative hyperbolicity, first introduced

by Gromov in his seminal paper and since improved upon by Bowditch, Farb, and others

[Gro87, Far98, Bow12, DS05, Osi06]. Roughly, a group is relatively hyperbolic if it is δ–

hyperbolic outside of some isolated collection of peripheral subgroups.

Although we shall mostly be using relative hyperbolicity as a black box, a definition

is included here for the sake of completeness. Note that there are a number of equivalent

definitions; see [Hru10, Sis12] for surveys of these and proofs of their equivalence. The version

of the definition given below is due to Farb.

Definition 2.2.1 (Relatively hyperbolic; [Far98]). Let G be a finitely generated group with

Cayley graph Γ and let P be a finite collection of finitely generated subgroups of G. The

coned-off Cayley graph Γ̂ “ Γ̂pPq of G with respect to P is obtained from Γ by adding a

vertex vgP for each coset gP of each subgroup P P P , and adding edges connecting vgP to

each vertex of gP in Γ. The group G is hyperbolic relative to P if there exists some δ ě 0 such

that Γ̂ is δ–hyperbolic and the pair pG,Pq satisfies the bounded coset penetration property,

defined below.

Definition 2.2.2 (Bounded coset penetration; [Far98]). Let G be a finitely generated group

with Cayley graph Γ and let P be a finite collection of finitely generated subgroups of G.

A path w in Γ is a word in the generators of G. By searching w for maximal subwords z

contained in cosets gP for P P P , one can obtain a path ŵ of Γ̂ by replacing subpaths given

by such subwords z with two edges connected to the corresponding cone point vgP . If ŵ

passes through the cone point vgP , we say w penetrates the coset gP . If ŵ is a geodesic of Γ̂,
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we say w is a relative geodesic of Γ. If ŵ is an L–quasi-geodesic of Γ̂, we say w is a relative

L–quasi-geodesic of Γ. The path w is a path without backtracking if w never returns to a

coset that it penetrates.

The pair pG,Pq satisfies the bounded coset penetration property if for all L ě 1 there

exists a constant c “ cpLq so that for every pair u, v of relative L–quasi-geodesics without

backtracking and with the same endpoints, the following conditions hold.

(1) If u penetrates a coset gP but v does not penetrate gP , then u travels a Γ–distance of

at most c in gP .

(2) If u and v both penetrate a coset gP , then the vertices of Γ where u and v first enter gP

are at Γ–distance at most c from each other. Similarly, the vertices of Γ where u and v

last exit gP are at distance at most c from each other.

A classical example of a relatively hyperbolic group is the fundamental group of a com-

plete, finite-volume, cusped hyperbolic manifold. This is hyperbolic relative to its cusp sub-

groups [Far98, Theorem 4.11]. Other examples include free products of finitely-generated

groups and non-uniform lattices in rank 1 symmetric spaces.

Importantly, relative hyperbolicity is a quasi-isometry invariant property [Dru09, Theo-

rem 1.2]. In fact, relatively hyperbolic groups are quasi-isometrically rigid in the following

stronger sense.

Theorem 2.2.3 (Rigidity of relatively hyperbolic groups; [BDM09, Theorem 4.8]). Let G

be a finitely generated group and suppose G is hyperbolic relative to a finite collection P

of finitely generated subgroups, none of which are relatively hyperbolic. If G1 is a finitely

generated group quasi-isometric to G, then G1 is hyperbolic relative to some finite collection

P 1 of finitely generated subgroups, each of which is quasi-isometric to some subgroup in P.

Remark 2.2.4. Although we concern ourselves primarily with relative hyperbolicity of

groups, a notion of relative hyperbolicity also exists for metric spaces in general; see e.g.
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[DS05].

2.2.2 Thickness and divergence

Thickness was introduced by Behrstock–Druţu–Mosher as an obstruction to relative hyper-

bolicity [BDM09], and further developed by Behrstock–Druţu [BD14]. Roughly, thickness

measures the complexity of coarse intersection patterns of non-negatively curved regions of

a space. We shall use the strong version of thickness, defined in [BD14].

Definition 2.2.5 (Strongly thick). A metric space X is strongly thick of order 0 if none of

its asymptotic cones have cut points and every point in X is uniformly close to a bi-infinite

uniform quasi-geodesic. In particular, X is strongly thick of order 0 if X is quasi-isometric

to a product of two infinite-diameter metric spaces, contains a bi-infinite quasigeodesic, and

admits a cocompact group action.

X is strongly thick of order at most n if there exist C ě 0, an index set I, and a collection

tPαuαPI of quasi-convex subsets of X satisfying the following three conditions.

(1) (Thick pieces.) Each Pα is strongly thick of order at most n´ 1.

(2) (Coarse covering.) X Ď NCp
Ť

αPI Pαq.

(3) (Thick chaining.) For each pair Pα, Pα1 there is a sequence Pα “ P0, P1, . . . , Pk “ Pα1

such that NCpPiq XNCpPi`1q has infinite diameter for each 0 ď i ď k ´ 1.

Each order of thickness is a quasi-isometry invariant [BDM09, Remark 7.2]. In this

way, thickness and relative hyperbolicity may be used in tandem to aid in distinguishing

quasi-isometry classes of groups and spaces.

Remark 2.2.6 (The relatively hyperbolic–thick dichotomy). It is important to note that

there is not always a strict dichotomy between relative hyperbolicity and thickness (see

[BDM09, Section 7.1]). However, in many cases, there is. For example, the dichotomy
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has been proven for mapping class groups, 3–manifold groups, and Artin groups [BDM09],

Teichmüller space [BM08], Coxeter groups [BHS17d], and free-by-cyclic groups [Hag19].

When studying groups, it is often more convenient to use the following algebraic version

of thickness. Note that algebraic thickness of order n implies metric thickness of order n, by

[BDM09, Proposition 7.6].

Definition 2.2.7 (Strongly algebraically thick). A finitely generated group G is strongly

algebraically thick of order 0 if none of its asymptotic cones have cut points and every point

in G is uniformly close to a bi-infinite uniform quasi-geodesic. In particular, G is strongly

algebraically thick of order 0 if it is quasi-isometric to a product of two infinite-diameter

metric spaces.

G is strongly algebraically thick of order at most n if there exists a finite index set I and a

collection tHαuαPI of quasi-convex subgroups of G satisfying the following three conditions.

(1) (Thick pieces.) Each Hα is strongly algebraically thick of order at most n´ 1.

(2) (Coarse covering.)
Ť

αPI Hα generates a finite-index subgroup of G.

(3) (Thick chaining.) For each pair Hα, Hα1 there is a sequence Hα “ H0, H1, . . . , Hk “

Hα1 such that Hi XHi`1 has infinite diameter for each 0 ď i ď k ´ 1.

In practice, it can be difficult to show that a group or space has a specific order of

thickness; by virtue of the definition, we often initially only obtain an upper bound on the

order. To facilitate finding the exact order of thickness, it is often convenient to compute

the divergence of the group or space.

Definition 2.2.8 (Divergence). Let pX, dXq be a geodesic metric space, and let 0 ă δ ă 1

and γ ě 0. Given a, b, c P X with dXpc, ta, buq “ r ą 0, define divγpa, b, c; δq to be the

infimum of the lengths of paths in X connecting a to b and avoiding the ball Bcpδr ´ γq. If

no such path exists, define divγpa, b, c; δq “ 8. The divergence function Divγpn; δq of X is

defined to be the supremum of all divγpa, b, c; δq with dXpa, bq ď n.
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Behrstock and Druţu show that the rate of divergence gives a lower bound on the order

of strong thickness.

Theorem 2.2.9 (Divergence bounds thickness; [BD14, Corollary 4.17]). Let X be a geodesic

metric space. If the divergence Divγpx; δq is at least polynomial of order n ` 1 for every

0 ă δ ă 1
54

and every γ ě 0, then X is strongly thick of order at least n.

2.3 Acylindrical hyperbolicity

Another generalisation of δ–hyperbolicity is the notion of acylindrical hyperbolicity. This

version of hyperbolicity was developed by Osin [Osi16], who built upon ideas of Sela and

Bowditch to bring it to its current form [Sel97, Bow08].

Definition 2.3.1 (Acylindrical). The action of a group G on a metric space X is acylindrical

if for all E ě 0, there exist R,N ě 0 so that if x, y P X satisfy dXpx, yq ě R, then there

are at most N elements g P G such that dXpx, gxq ď E and dXpy, gyq ď E. We say G is

acylindrically hyperbolic if it admits a non-elementary acylindrical action on a hyperbolic

space X by isometries. (An action is non-elementary if it has two independent loxodromic

elements.)

One notable consequence of acylindricity is the following classification due to Osin.

Theorem 2.3.2 ([Osi16, Theorem 1.1]). Let G be a group acting acylindrically on a hyper-

bolic space. Then G satisfies exactly one of the following.

(1) G has bounded orbits.

(2) G is virtually cyclic and contains a loxodromic element.

(3) G contains infinitely many independent loxodromic elements.
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2.4 Cube complexes

Definition 2.4.1 (Cube complex). Let n ě 0. An n–cube is a Euclidean cube r´1
2
, 1

2
sn. A

face of a cube is a subcomplex obtained by restricting one or more of the coordinates to ˘1
2
.

A cube complex is a CW complex where each cell is a cube and the attaching maps are given

by isometries along faces.

We will often refer to the 0–cubes of a cube complex X as vertices, the 1–cubes as edges,

and the 2–cubes as squares.

Definition 2.4.2 (Non-positively curved, CAT(0), cubical group). LetX be a cube complex.

The link linkpvq of a vertex v of X is a simplicial complex defined as follows.

• The vertices of linkpvq are the edges of X that are incident at v.

• n vertices of linkpvq span an n–simplex if the corresponding edges of X are faces of a

common cube.

The complex linkpvq is said to be flag if n vertices v1, . . . , vn of linkpvq span an n–simplex

if and only if vi and vj are connected by an edge for all i ‰ j. A cube complex X is non-

positively curved if the link of each vertex of X is flag and contains no bigons (that is, no

loops consisting of two edges). A cube complex X is CAT(0) if it is non-positively curved

and simply connected. A group is said to be cubical if it acts geometrically on a CAT(0)

cube complex.

Henceforth, all the cube complexes we use shall be non-positively curved, unless other-

wise specified. The link condition tells us that a non-positively curved cube complex X is

determined by its 1–skeleton Xp1q. In general, we shall therefore work in this 1–skeleton,

where we use the graph metric, denoted dX . The resulting metric space is a median graph,

as shown in [Che00, Theorem 6.1].
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Figure 2.4: This 2–dimensional cube complex is not non-positively curved because the link
of the central vertex (shown in red) is not flag.

Definition 2.4.3 (Median graph). Let Γ be a graph with graph metric d. The resulting

metric graph is a median graph if for any three distinct vertices u, v, w of Γ, there exists a

unique vertex m “ mpu, v, wq such that

dpu, vq “ dpu,mq ` dpm, vq,

dpv, wq “ dpv,mq ` dpm,wq,

dpw, uq “ dpw,mq ` dpm,uq.

The vertex m is the median of u, v, and w.

Many important properties of cube complexes may be proved from this combinatorial

point of view of median graphs; see [Che00, Section 6.2] for an overview of such arguments,

as well as their relation to the more geometric point of view of hyperplanes, which is the

perspective we shall take.

Definition 2.4.4 (Mid-cube, hyperplane, combinatorial hyperplane, carrier). Let X be a

cube complex. A mid-cube of a cube C – r´1
2
, 1

2
sn of X is obtained by restricting one of the

coordinates of C to 0. Each mid-cube has two isometric associated faces of C, obtained by

restricting this coordinate to ˘1
2
instead of 0. A hyperplane H of X is a maximal connected

union of mid-cubes. A combinatorial hyperplane associated to H is a maximal connected

union of faces associated to mid-cubes of H. The closed (resp. open) carrier of H is the

union of all closed (resp. open) cubes of X which contain mid-cubes of H.
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Convention 2.4.5. We will almost always be using the closed version of the carrier of a

hyperplane H, therefore we will refer to this version as simply the ‘carrier’ of H. We denote

this closed version of the carrier by NpHq.

A result of Chepoi tells us that carriers and combinatorial hyperplanes form convex

subcomplexes of X [Che00, Proposition 6.6]. The combinatorial hyperplanes associated to

a given hyperplane are also ‘parallel’, in the following sense.

Definition 2.4.6 (Parallelism and separation). Let H be a hyperplane of a cube complex

X. We say that H is dual to an edge E of X if H contains a mid-cube which intersects E.

We say that H crosses a subcomplex Y of X if there exists some edge E of Y that is dual

to H. We say that H crosses another hyperplane H 1 if it crosses a combinatorial hyperplane

associated to H 1. We say H separates two subcomplexes Y, Y 1 of X if Y and Y 1 are contained

in two different connected components of X rH. Two subcomplexes Y, Y 1 of X are parallel

if each hyperplane H of X crosses Y if and only if it crosses Y 1.

Parallelism of combinatorial hyperplanes can in fact be generalised to a much stronger

result which characterises parallelism of any convex subcomplexes.

Lemma 2.4.7 ([BHS17b, Lemma 2.4]). Let K and K 1 be convex subcomplexes of a CAT(0)

cube complex X. The following are equivalent.

(1) K and K 1 are parallel.

(2) There is a cubical isometric embedding i : K ˆ r0, ls Ñ X such that ipK ˆt0uq “ K and

ipK ˆ tluq “ K 1, and for each x P K, iptxu ˆ r0, lsq is a geodesic segment in X whose

dual hyperplanes are precisely those separating K from K 1.

Remark 2.4.8. Parallelism defines an equivalence relation on the edges of a cube complex

X. In particular, two edges are in the same equivalence class (or parallelism class) if and only

if they are dual to the same hyperplane. Therefore, one may instead consider hyperplanes
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of X to be parallelism classes of edges of X. One may also define an orientation ÝÑH on a

hyperplane H by taking an equivalence class of oriented edges. In this case, we say that ÝÑH

is dual to the oriented edges in this class.

Definition 2.4.9 (Osculation). We say H directly self-osculates if there exist two oriented

edges ÝÑE1,
ÝÑ
E2 dual to ÝÑH that have the same initial or terminal vertex but do not span a

square. We say two hyperplanes H1, H2 inter-osculate if they intersect and there exist dual

edges E1, E2 of H1, H2, respectively, such that E1 and E2 share a common endpoint but do

not span a square. See Figure 2.5.

Figure 2.5: A directly self-osculating hyperplane and a pair of inter-osculating hyperplanes.

Definition 2.4.10 (Special). A non-positively curved cube complex X is said to be special

if its hyperplanes satisfy the following properties.

(1) Hyperplanes are two-sided; that is, the open carrier of a hyperplane H is homeomorphic

to H ˆ p´1
2
, 1

2
q.

(2) Hyperplanes of X do not self-intersect.

(3) Hyperplanes of X do not directly self-osculate.

(4) Hyperplanes of X do not inter-osculate.

The following fact is an easy but noteworthy consequence of the above definitions.
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Fact 2.4.11. The universal cover of a non-positively curved cube complex is a CAT(0) cube

complex. In particular, the universal cover of a special cube complex is a CAT(0) cube

complex.

Conversely, a result of Haglund and Wise tells us that a CAT(0) cube complex is itself

special.

Proposition 2.4.12 ([HW08, Example 3.3]). Any CAT(0) cube complex is special.

The hyperplanes of a CAT(0) cube complex X enjoy many useful properties beyond the

ones in the definition of ‘special’, as outlined below. We shall see in Section 2.7.4 that

these hyperplane properties translate into powerful geometric properties, as well as algebraic

properties of π1pY q in the case where X is the universal cover of a special cube complex Y .

Proposition 2.4.13 (Hyperplane properties; [Sag95, Che00, Hag14]). Let X be a CAT(0)

cube complex.

(1) Any hyperplane H of X is itself a CAT(0) cube complex. Moreover, its hyperplanes are

of the form H X J , where J ‰ H is a hyperplane of X.

(2) Each hyperplane separates X into two connected components.

(3) If H is a hyperplane of X, then its carrier NpHq and any combinatorial hyperplane

associated to H are convex in X.

(4) If H is a hyperplane of X, then each connected component of X rH is convex in X.

(5) A continuous path γ in Xp1q is a geodesic if and only if γ intersects each hyperplane at

most once. In particular, if x and y are two vertices of X, then dXpx, yq is equal to the

number of hyperplanes of X separating x and y.

(6) If two hyperplanes H1 and H2 cross, then there exists a unique pair of edges E1, E2 dual

to H1 and H2, respectively, such that E1 and E2 span a square of X.
30



(7) Let K be a connected convex subcomplex of X. Any pair of hyperplanes of X that cross

each other and also cross K must necessarily cross inside K (that is, the square given

by Property 6 is contained in K).

Proof. Properties (1) and (2) are proved in [Sag95, Theorems 4.11, 4.10]. Property (3)

is shown in the proof of [Che00, Proposition 6.6]. Property (4) follows immediately from

Properties (2) and (5). Property (7) is given in [Hag14, Lemma 2.13].

Property (5) follows from convexity of combinatorial hyperplanes. Indeed, let γ be a

geodesic in X and suppose a hyperplane H crosses γ more than once. By orienting γ, we

can order the edges of γ that are dual to H. Let E and E 1 be two consecutive dual edges

with respect to this order. Let x, y and x1, y1 be the vertices of E and E 1, respectively,

such that x, x1 are contained in a combinatorial hyperplane H` and y, y1 are contained in a

combinatorial hyperplane H´. By convexity, the subsegment of γ connecting x and x1 must

be contained in H` and the subsegment of γ connecting y and y1 must be contained in H´.

However, this implies that H` XH´ ‰ H, contradicting two-sidedness of H.

Property (6) follows from Property (5). Indeed, suppose two hyperplanes H1 and H2 of

X cross. Then there exists some edge E1 dual to H1 that is contained in a combinatorial

hyperplane associated to H2. By definition, every edge of a combinatorial hyperplane spans

a square with an edge dual to the associated hyperplane. Thus, there exists some edge E2

dual to H2 that spans a square with E1. Moreover, by Property (5), H1 cannot cross H2

more than once, as it would have to cross a combinatorial hyperplane and thus a geodesic

more than once. Therefore, the edges E1 and E2 must be unique.

As discussed in [BHS17b, Section 2.1], CAT(0) cube complexes admit projections to

convex subcomplexes, which satisfy particularly nice geometric properties, as summarised

below. We call such projections gate maps.

Proposition 2.4.14 (Gate map; [BHS17b, Section 2.1]). Let X be a CAT(0) cube complex.

For each convex subcomplex K Ď X, there exists a map gK : X Ñ K satisfying the following
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properties.

(1) For all x, y P X, dXpgKpxq, gKpyqq ď dXpx, yq.

(2) For all x P X, gKpxq is the unique vertex of K such that dXpx, gKpxqq “ dXpx,Kq.

(3) Any hyperplane of X that separates x from gKpxq separates x from K.

(4) If x, y P X and H is a hyperplane of X separating gKpxq and gKpyq, then H separates

x and y, so that x and gKpxq (resp. y and gKpyq) are contained in the same connected

component of X rH.

Another important tool in the study of CAT(0) cube complexes is the contact graph, a

structural invariant originally introduced by Hagen [Hag12] which encodes the hyperplane

structure of a cube complex while ignoring the CAT(0) geometry. A number of coarse

properties of cube complexes can be inferred from simple properties of the contact graph; in

fact, we will see in Section 2.7.4 that the contact graph plays an important role in developing

hierarchically hyperbolic structures for CAT(0) cube complexes.

Definition 2.4.15 (Contact graph). Let X be a CAT(0) cube complex. The contact graph

of X, denoted C0pXq, is the simplicial graph whose vertex set is the set H of hyperplanes

of X, and where two vertices H1, H2 P H are connected by an edge if the (closed) carriers

NpH1q, NpH2q intersect. We say that H1 and H2 contact.

One key property of the contact graph is that it is δ–hyperbolic. In fact, Hagen showed it

is a quasi-tree [Hag14, Theorem 4.1]. Below, we give a simple alternate proof of hyperbolicity

of C0pXq, relying only on the hyperplane properties of CAT(0) cube complexes detailed

above. In particular, we obtain an explicit hyperbolicity constant of δ “ 5
2
.

Theorem 2.4.16 (The contact graph is hyperbolic). Let X be a CAT(0) cube complex. The

contact graph C0pXq is 5
2
–hyperbolic.
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Proof. Let x, y, z P C0pXq be three distinct points, and let γ1, γ2, γ3 be three C0pXq–geodesics

connecting the pairs ty, zu, tz, xu, and tx, yu, respectively. Without loss of generality, we

may assume x, y, z are vertices of C0pXq. Indeed, if x lies in the interior of an edge e, then

the geodesic triangle ∆ “ γ1Y γ2Y γ3 must contain at least one endpoint of e. If ∆ contains

both endpoints of e, then x may be replaced with one of the endpoints without affecting ∆,

since C0pXq is a graph. If ∆ contains only one endpoint v of e, then the path γ1 Y γ2 Y γ3

backtracks at the point x. Thus, we may replace x with v to obtain a new geodesic triangle

∆1 that is δ–hyperbolic if and only if ∆ is δ–hyperbolic.

The points x, y, z therefore correspond to hyperplanes Hx, Hy, Hz of X. Moreover, the

geodesics γ1, γ2, γ3 correspond to minimal-length sequences Hy “ H1
1 , . . . , H

n1
1 “ Hz, Hz “

H1
2 , . . . , H

n2
2 “ Hx, Hx “ H1

3 , . . . , H
n3
3 “ Hy of hyperplanes of X such that each pair of

consecutive hyperplanes has intersecting carriers. We wish to show that the geodesic triangle

∆ is 5
2
–slim, that is, each of the geodesics γi is contained in the 5

2
–neighbourhood of the other

two geodesics. Let p be a point on γ3. We wish to show that p is within a distance of 5
2
of

some point on γ1Y γ2. It is sufficient to assume p is a vertex of γ3 and show that p is within

a distance of 2 of some vertex of γ1 Y γ2. In particular, it suffices to show there exists some

hyperplane H that crosses both Hp and Hj
i for some i P t1, 2u and j P t1, . . . , niu, where Hp

is the hyperplane of X corresponding to the vertex p of C0pXq.

Claim 2.4.17. There exists a hyperplane H of X that crosses both Hp and Hj
i for some

i P t1, 2u and j P t1, . . . , niu.

Proof of claim. Consider the hyperplanes H1
1 , . . . , H

n1
1 “ H1

2 , . . . , H
n2
2 “ H1

3 , . . . , H
n3
3 “ H1

1

corresponding to the vertices of the geodesic triangle ∆. We say two hyperplanes Hj
i , H

l
k are

adjacent if the corresponding vertices are adjacent in ∆; that is, if i “ k and |j ´ l| “ 1, or

if i “ 1, j “ n1, k “ 2, l “ 1 or i “ 2, j “ n2, k “ 3, l “ 1 or i “ 3, j “ n3, k “ 1, l “ 1.

In particular, if two hyperplanes are adjacent then their carriers intersect. For each pair

of adjacent hyperplanes Hj
i , H

l
k, pick a vertex q P NpHj

i q X NpH l
kq. We obtain a sequence
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q1
1, . . . , q

n1
1 “ q1

2, . . . , q
n2
2 “ q1

3, . . . q
n3
3 “ q1

1 of vertices of X. We say qji and qlk are adjacent

if the corresponding hyperplanes are adjacent. We can then connect pairs of adjacent qji

with geodesics in NpHj
i q, by convexity of carriers (Proposition 2.4.13(3)). Let βji be the

geodesic from qji to qj`1
i , and denote the geodesic contained in NpHpq by βp. The union of

the geodesics βji forms a loop β in X; see Figure 2.6.

Hx “ H1
3 “ Hn2

2
Hy “ Hn3

3 “ H1
1

Hz “ Hn1
1 “ H1

2

H2
3 Hp “ H l

3

Hj
2

β1
3

β2
3

βp “ βl3

H

β1
1

βn3´1
3

ql3

Figure 2.6: The geodesic triangle ∆ in C0pXq gives a loop in X constructed from the corre-
sponding hyperplanes. We wish to show there is a hyperplane H that crosses both Hp and
some Hj

i for i “ 1 or 2.

Suppose Hp “ H l
3, so that βp “ βl3. Note that since βl3 is contained in NpH l

3q, all edges

of βl3 are either dual to H l
3 or contained in a combinatorial hyperplane associated to H l

3. Let

E “ tE1, . . . , Enu be the edges of βl3 that are not dual to Hj
3 for j “ l ´ 1, l, l ` 1 and such

that for each k, the maximal-dimensional cube of NpH l
3q containing Ek does not contain any

edges of NpH l´1
3 q or NpH l`1

3 q. Furthermore, suppose the edges Ek are ordered according to

the orientation of βl3. Let Hk be the hyperplane dual to Ek. Since all of the edges Ek are

contained in a combinatorial hyperplane associated to H l
3, it follows that Hk crosses H l

3 for
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all k. It remains to show that there exists some k such that Hk also crosses some Hj
i for

i P t1, 2u. It suffices to show that Hk crosses some βji for i P t1, 2u.

First consider H1. Since H1 separates X into two connected components (Proposition

2.4.13(2)) and H1 is dual to an edge of the loop β, it follows that H1 must also be dual

to another edge of β. Furthermore, since each hyperplane crosses each geodesic at most

once (Proposition 2.4.13(5)), H1 must cross some βji ‰ βl3. If i “ 1 or 2, then we are done.

Suppose therefore that i “ 3 and j ‰ l. We then break our analysis down into the following

cases.

Case 1: j ď l´3 or j ě l`2. Note that because E1 is the first edge of E , it follows that

NpH1q must contain a vertex of NpH l´1
3 q XNpH l

3q; that is, H1 contacts H l´1
3 . Therefore, if

j ě l`2, then we obtain a sequence of contacting hyperplanes H l´1
3 , H1, H

j
3 which is shorter

than the sequence H l´1
3 , H l

3, . . . , H
j
3 . If j ď l ´ 3, then we obtain a sequence of contacting

hyperplanes H l
3, H1, H

j
3 which is shorter than the sequence H l

3, H
l´1
3 , . . . , Hj

3 . In both cases,

this contradicts our assumption that γ3 is a geodesic in C0pXq. Therefore, l´ 2 ď j ď l` 1.

See Figure 2.7.

H l
3

H1

Figure 2.7: If H1 crosses Hj
3 for j ě l ` 2 then this creates a shortcut in the contact graph,

as H1 contacts both H l´1
3 and H l`2

3 .
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Case 2: j “ l ´ 1. Recall that NpH1q contains a vertex v of NpH l´1
3 q X NpH l

3q. Let

E be the edge dual to H1 containing v, and let E 1 be the edge dual to H l´1
3 containing

v. Note that E is contained in NpH l
3q, and E is contained in the same cube as E1. If E

and E 1 span a square, then E is also contained in NpH l´1
3 q, contradicting our assumption

that the maximal-dimensional cube of NpH l
3q containing E1 does not contain any edges of

NpH l´1
3 q or NpH l`1

3 q. On the other hand, if E and E 1 do not span a square then H1 and

H l´1
3 inter-osculate, contradicting our assumption that X is CAT(0) (and therefore special

by Proposition 2.4.12); see Figure 2.8. Therefore, j ‰ l ´ 1.

H l
3

H1

Figure 2.8: If H1 crosses H l´1
3 then H1 and H l´1

3 inter-osculate.

Case 3: j “ l ` 1. Suppose E “ tE1u. Because E1 is the last edge of E , it follows that

NpH1q must contain a vertex v of NpH l
3qXNpH

l`1
3 q. Let E be the edge dual to H1 containing

v, and let E 1 be the edge dual to H l`1
3 containing v. Note that E is contained in NpH l

3q, and

E is contained in the same cube as E1. If E and E 1 span a square, then E is also contained

in NpH l`1
3 q, contradicting our assumption that the maximal-dimensional cube of NpH l

3q

containing E1 does not contain any edges of NpH l´1
3 q or NpH l`1

3 q. On the other hand, if E

and E 1 do not span a square then H1 and H l`1
3 inter-osculate, contradicting our assumption

that X is special. Thus, we may assume that E contains more than one edge. In this case,

we have a loop in C0pXq given by the contacting hyperplanes H l
3, H

l`1
3 , H1. We can therefore

construct a loop α in X in a similar manner to β; pick vertices w1 in NpH1q XNpH
l
3q, w2 in
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NpH l
3q X NpH l`1

3 q, and w3 in NpH l`1
3 q X NpH1q and connect them via geodesics α1, α2, α3

in NpH l
3q, NpH

l`1
3 q, NpH1q. Moreover, without loss of generality we may assume that w1

lies on βl3, w2 “ ql`1
3 , w3 lies on βl`1

3 , and α1 Ď βl3, α2 Ď βl`1
3 ; see Figure 2.9. Consider

the hyperplane H2, which is dual to an edge of α1. Note that H2 must cross another edge

of α by Proposition 2.4.13(2). Further, H2 cannot cross another edge of α1 by Proposition

2.4.13(5) and H2 cannot cross α3 since this would imply H2 and H1 inter-osculate. Thus,

H2 crosses an edge of α2. We may repeat this analysis on each of the hyperplanes Hk in

turn, noting that Hk either crosses α1 a second time (contradicting Proposition 2.4.13(5)),

or crosses Hk´1 (causing an inter-osculation), or crosses α2. We conclude that Hk must

cross α2 for all k. However, if Hn crosses α2 then this causes Hn and H l`1
3 to inter-osculate,

contradicting specialness of X. Therefore, we must have j ‰ l ` 1.

H l
3

H1

α1

α3

α2

Figure 2.9: If H1 crosses H l`1
3 then we can analyse the behaviour of hyperplanes crossing

the new loop α.

Case 4: H1 does not exist. We must also consider the case that the collection E is

empty; that is, all edges of βl3 are either dual to some Hj
3 with j “ l ´ 1, l, or l ` 1, or are

contained in a maximal-dimensional cube of NpH l
3q that also contains an edge of NpH l´1

3 q or

NpH l`1
3 q. In this case, either H l´1

3 and H l`1
3 contact (contradicting γ3 being a geodesic) or

H l
3 separates the endpoints of βl3 and we can repeat the above case analysis for H l

3; see Figure

2.10. This time, the case of j “ l´ 2 is ruled out too since H l
3 contacts H l`1

3 . Therefore, H l
3

must cross Hj
i for i P t1, 2u, concluding our argument.
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H l
3

Figure 2.10: If H1 does not exist, then H l
3 must cross Hj

i for i “ 1 or 2.

Notice that if H1 exists, the only case that does not result in a contradiction is therefore

when j “ l ´ 2. That is, H1 crosses H l´2
3 . Moreover, each Hk contacts Hk´1. Thus, by

inducting on k and repeating this case analysis with Hk´1 in place of H l´1
3 , we see that

each Hk either crosses some Hj
i with i P t1, 2u, concluding the proof, or crosses H l´2

3 .

Furthermore, En is the last edge of E , so NpHnq must share a vertex with NpH l`1
3 q; that

is, Hn contacts H l`1
3 . Thus, if Hn crosses H l´2

3 then we obtain a sequence of contacting

hyperplanes H l`1
3 , Hn, H

l´2
3 which is shorter than the sequence H l`1

3 , H l
3, H

l´1
3 , H l´2

3 . This

contradicts our assumption that γ3 is a geodesic in C0pXq. Hence, Hn cannot cross H l´2
3 and

so there must exist some k such that Hk crosses Hj
i for some i P t1, 2u. See Figure 2.11.

H l
3

H1 Hn

Figure 2.11: If Hn crosses H l´2
3 then this creates a shortcut in the contact graph, as Hn

contacts both H l`1
3 and H l´2

3 .

This concludes the proof of Theorem 2.4.16.
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2.4.1 Right-angled Artin groups

Right-angled Artin groups form one of the foundational examples of cubical groups.

Definition 2.4.18 (Right-angled Artin group). Let Γ be a finite simplicial graph. The

right-angled Artin group AΓ is defined as

AΓ “ xV pΓq | rv, ws “ e @ tv, wu P EpΓqy.

We call Γ the defining graph of AΓ.

A right-angled Artin group may be expressed as the fundamental group of a cube complex

called the Salvetti complex, constructed as follows.

Definition 2.4.19 (Salvetti complex). The Salvetti complex SΓ of the right-angled Artin

group AΓ is the cube complex defined as follows.

• SΓ has a single vertex.

• SΓ has an edge Ev for each vertex v of Γ.

• Edges Ev1 , . . . , Evn span an n–cube if v1, . . . , vn span an n–clique of Γ.

Note that since SΓ has just a single vertex, all edges of SΓ must form loops and each

n–cube is an n–torus. It therefore follows immediately that AΓ is the fundamental group of

SΓ. Moreover, SΓ is a special cube complex (see [HW08, Example 3.3]). In fact, one can

show that any special cube complex X embeds in the Salvetti complex of some right-angled

Artin group AΓ via a local isometry [HW08, Theorem 1.1], and therefore π1pXq embeds in

AΓ itself.

Theorem 2.4.20 ([HW08, Theorem 1.1]). Let X be a special cube complex. Then π1pXq

embeds in a right-angled Artin group.
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Note that if Γ is disconnected, then AΓ can be expressed as a free product of the right-

angled Artin groups defined on each of the connected components of Γ. In particular, AΓ is

hyperbolic relative to these free factors. On the other hand, if Γ splits as a join, then AΓ

splits as a direct product, where the factors are the right-angled Artin groups defined on the

components of the join. In this case, AΓ is thick of order 0.

Behrstock–Druţu–Mosher go further by showing that if Γ is connected and has at least 2

vertices, then AΓ is thick of order at most 1 [BDM09, Corollary 10.8]. Moreover, Behrstock

and Charney show that if Γ also does not split as a join, then the divergence of AΓ is at

least quadratic [BC12, Corollary 4.8]. Combining these two results, we have a complete

characterisation of relative hyperbolicity and thickness in right-angled Artin groups.

Theorem 2.4.21 (Characterisation of relative hyperbolicity and thickness in right-angled

Artin groups; [BDM09, Corollary 10.8],[BC12, Corollary 4.8]). Let Γ be a finite simplicial

graph with at least 2 vertices.

• If Γ is disconnected, then AΓ is freely decomposable, and in particular is hyperbolic

relative to its free factors.

• If Γ splits as a join, then AΓ is strongly thick of order 0.

• Otherwise, AΓ is strongly thick of order 1.

2.4.2 Right-angled Coxeter groups

By taking the definition of a right-angled Artin group and adding extra relations that require

all generators to have order 2, one obtains a right-angled Coxeter group.

Definition 2.4.22 (Right-angled Coxeter group). Let Γ be a finite simplicial graph. The

right-angled Coxeter group WΓ is defined as

WΓ “ xV pΓq | rv, ws “ e @ tv, wu P EpΓq, v2
“ e @ v P V pΓqy.
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Right-angled Coxeter groups form another salient example of cubical groups. This time,

their cubical structure is given by the Davis complex.

Definition 2.4.23 (Davis complex). The Davis complex ΣΓ of the right-angled Coxeter

group WΓ is the cube complex defined as follows.

• The 1–skeleton of ΣΓ is the Cayley graph of WΓ. Thus, each edge of ΣΓ is labelled by

a vertex of Γ.

• Pairwise adjacent edges E1, . . . , En span an n–cube if they are labelled by distinct

vertices v1, . . . , vn which span an n–clique of Γ.

The Davis complex ΣΓ is a CAT(0) cube complex upon which WΓ acts geometrically

[Dav08]. It may in some sense be considered to be analogous to the universal cover of the

Salvetti complex in the right-angled Artin group case; indeed, Haglund and Wise show that

right-angled Coxeter groups have a finite-index subgroup which is the fundamental group of a

special cube complex [HW10]. Furthermore, by studying these two CAT(0) cube complexes,

Davis and Januszkiewicz show that every right-angled Artin group can be realised as a

finite-index subgroup of a right-angled Coxeter group.

Theorem 2.4.24 ([DJ00]). For every right-angled Artin group there exists a right-angled

Coxeter group which contains it as a subgroup of finite index.

One immediate consequence of this theorem is that the spectrum of possible rates of

divergence for right-angled Coxeter groups must at the very least contain those of right-

angled Artin groups. Behrstock and Charney’s results therefore tell us that there exist

right-angled Coxeter groups with linear, quadratic, and infinite divergence [BC12, Corollary

4.8].

Levcovitz takes this further, obtaining a complete classification of divergence in right-

angled Coxeter groups, as well as a classification of relative hyperbolicity and thickness akin
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to Theorem 2.4.21 [Lev20, Theorem A, Corollary B]. This is achieved by studying a graph

invariant called the hypergraph index.

Definition 2.4.25 (Hypergraph index). Let Γ be a finite simplicial graph, and let Λ be a

subgraph of Γ which splits as a join Λ “ Λ1 ‹ Λ2. We say Λ is a wide subgraph if Λ1 and

Λ2 each contain two non-adjacent vertices. We say Λ is a strip subgraph if Λ1 consists of

two non-adjacent vertices and Λ2 is a clique. Let Φ be the collection of all maximal wide

subgraphs of Γ and let Ψ be the collection of all maximal strip subgraphs.

Inductively define a collection of hypergraphs ∆i “ ∆ipΓq as follows. Let ∆0 be the

hypergraph with vertex set V pΓq and hyperedge set tV pΛq |Λ P Φ Y Ψu. For each i ě 0,

define an equivalence relation”i on the hyperedges of ∆i by setting E ”i E 1 for E,E 1 P Ep∆iq

if there exists a sequence of hyperedges E “ E1, E2, . . . , En “ E 1 in Ep∆iq such that for each

1 ď j ă n, Ej X Ej`1 contains a pair of vertices which are non-adjacent in Γ. Now define

∆i`1 to be the hypergraph with vertex set V pΓq and where E Ď V pΓq is a hyperedge of ∆i`1

if and only if E “ E1Y ¨ ¨ ¨ YEm for some maximal collection tE1, . . . , Emu of ”i–equivalent

hyperedges of ∆i.

We define the hypergraph index of Γ to be the smallest integer k ě 0 such that there exists

a hyperedge E P Ep∆kq with E “ V pΓq. If no such k exists, then we say the hypergraph

index of Γ is 8.

Theorem 2.4.26 (Characterisation of relative hyperbolicity and thickness in right-angled

Coxeter groups; [Lev20, Theorem A, Corollary B]). Let Γ be a finite simplicial graph.

• If Γ has infinite hypergraph index, then WΓ is relatively hyperbolic. Moreover, WΓ has

exponential divergence if it is one-ended, and infinite divergence otherwise.

• If Γ has hypergraph index k ě 0, thenWΓ is strongly thick of order k and has polynomial

divergence of degree k ` 1.
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2.5 Graph braid groups

In this section we introduce graph braid groups and show they can be expressed as funda-

mental groups of special cube complexes.

Consider a finite collection of particles lying on a finite metric graph Γ. The configuration

space of these particles on Γ is the collection of all possible ways the particles can be arranged

on the graph with no two particles occupying the same location. As we move through the

configuration space, the particles move along Γ, without colliding. If we do not distinguish

between each of the different particles, we call this an unordered configuration space. A graph

braid group is the fundamental group of an unordered configuration space. More precisely:

Definition 2.5.1 (Graph braid group). Let Γ be a finite graph, and let n be a positive

integer. The topological configuration space Ctop
n pΓq is defined as

Ctop
n pΓq “ Γn rDtop,

where Dtop “ tpx1, . . . , xnq P Γn | xi “ xj for some i ‰ ju. The unordered topological

configuration space UCtop
n pΓq is then defined as

UCtop
n pΓq “ Ctop

n pΓq{Sn,

where the symmetric group Sn acts on Ctop
n pΓq by permuting its coordinates. We define the

graph braid group BnpΓ, Sq as

BnpΓ, Sq “ π1pUC
top
n pΓq, Sq,

where S P UCtop
n pΓq is a fixed base point.

The base point S in our definition represents an initial configuration of the particles on

the graph Γ. As the particles are unordered, they may always be moved along Γ into any
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other desired initial configuration, so long as the correct number of particles are present in

each connected component of Γ. In particular, if Γ is connected, then the graph braid group

BnpΓ, Sq is independent of the choice of base point, and may therefore be denoted simply

BnpΓq. The following result of Genevois shows that we can always express BnpΓ, Sq as a

product of braid groups of connected graphs; thus, we will often be able to work under the

assumption that Γ is connected without loss of generality.

Lemma 2.5.2 ([Gen19a, Lemma 3.5]). Let n ą 1, let Γ be a finite graph, and suppose

Γ “ Γ1 \ Γ2. Then

UCtop
n pΓq »

n
ğ

k“0

UCtop
k pΓ1q ˆ UC

top
n´kpΓ2q.

Moreover, if S P UC top
n pΓq has k particles in Γ1 and n´ k particles in Γ2, then

BnpΓ, Sq – BkpΓ1, S X Γ1q ˆBn´kpΓ2, S X Γ2q,

where S X Γ1 (resp. S X Γ2) denotes the configuration of the k (resp. n ´ k) particles of S

lying in Γ1 (resp. Γ2).

Note that in some sense, the space UCtop
n pΓq is almost a cube complex. Indeed, Γn

is a cube complex, but removing the diagonal breaks the structure of some of its cubes.

By expanding the diagonal slightly, we are able to fix this by ensuring that we are always

removing whole cubes.

Definition 2.5.3 (Combinatorial configuration space). Let Γ be a finite graph, and let n be

a positive integer. For each x P Γ, the carrier cpxq of x is the lowest dimensional simplex of

Γ containing x. The combinatorial configuration space CnpΓq is defined as

CnpΓq “ Γn rD,

where D “ tpx1, . . . , xnq P Γn | cpxiq X cpxjq ‰ H for some i ‰ ju. The unordered combina-
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torial configuration space UCnpΓq is then

UCnpΓq “ CnpΓq{Sn.

The reduced graph braid group RBnpΓ, Sq is defined as

RBnpΓ, Sq “ π1pUCnpΓq, Sq,

where S P UCnpΓq is a fixed base point.

Removing this new version of the diagonal tells us that two particles cannot occupy the

same edge of Γ. This effectively discretises the motion of the particles to jumps between

vertices, as each particle must fully traverse an edge before another particle may enter.

Observe that CnpΓq is the union of all products cpx1qˆ¨ ¨ ¨ˆcpxnq satisfying cpxiqXcpxjq “

H for all i ‰ j. Since the carrier is always a vertex or a closed edge, this defines an n–

dimensional cube complex, and moreover CnpΓq is compact with finitely many hyperplanes,

as Γ is a finite graph. It follows that UCnpΓq is also a compact cube complex with finitely

many hyperplanes. Indeed, we have the following useful description of the cube complex

structure, due to Genevois [Gen19a].

• The vertices of UCnpΓq are the subsets S of V pΓq with size |S| “ n.

• Two vertices S1 and S2 of UCnpΓq are connected by an edge if their symmetric difference

S14S2 is a pair of adjacent vertices of Γ. We therefore label each edge E of UCnpΓq

with a closed edge e of Γ.

• A collection of m edges of UCnpΓq with a common endpoint span an m–cube if their

labels are pairwise disjoint.

Abrams showed that if Γ has more than n vertices, then UCnpΓq is connected if and only

if Γ is connected.
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Theorem 2.5.4 ([Abr00, Theorem 2.6]). Let Γ be a finite graph. If Γ has more than n

vertices, then UCnpΓq is connected if and only if Γ is connected.

Furthermore, Abrams showed that if we subdivide edges of Γ sufficiently (i.e. add 2–valent

vertices to the middle of edges) to give a new graph Γ1, then UCtop
n pΓ1q deformation retracts

onto UCnpΓ1q [Abr00, Theorem 2.1]. As UCtop
n pΓ1q does not distinguish vertices from other

points on the graph, we have UCtop
n pΓ1q = UCtop

n pΓq, implying that BnpΓ, Sq – RBnpΓ
1, Sq.

This allows us to consider BnpΓ, Sq as the fundamental group of the cube complex UCnpΓ1q.

Prue and Scrimshaw later improved upon the constants in Abrams’ result to give the

following theorem [PS14, Theorem 3.2].

Theorem 2.5.5 ([Abr00],[PS14]). Let n P N and let Γ be a finite graph with at least n

vertices. The unordered topological configuration space UC top
n pΓq deformation retracts onto

the unordered combinatorial configuration space UCnpΓq if the following conditions hold.

(1) Every path between distinct vertices of Γ of valence ě 3 has length at least n´ 1.

(2) Every homotopically essential loop in Γ has length at least n` 1.

Remark 2.5.6. Note that Prue and Scrimshaw’s version of the theorem only deals with the

case where Γ is connected. However, the disconnected case follows easily by deformation

retracting each connected component of UCnpΓq, noting that Lemma 2.5.2 tells us that each

component can be expressed as a product of cube complexes UCkpΛq, where k ď n and Λ is

a connected component of Γ.

Another foundational result of Abrams states that the cube complex UCnpΓq is non-

positively curved [Abr00, Theorem 3.10]. Furthermore, Genevois proved that UCnpΓq admits

a special colouring [Gen19a, Proposition 3.7]. We shall omit the details of his theory of special

colourings, and direct the reader to [Gen21] for further details. The key result is that a cube

complex X admits a special colouring if and only if there exists a special cube complex Y
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such that Y p2q “ Xp2q [Gen21, Lemma 3.2]. Furthermore, Genevois constructs Y by taking

Xp2q and inductively attaching m–cubes C whenever a copy of Cpm´1q is present in the

complex, for m ě 3; this ensures non-positive curvature of Y . Since in our case X “ UCnpΓq

is already non-positively curved, this means Y “ X. Thus, BnpΓq is the fundamental group

of the special cube complex UCnpΓ1q.

In summary, we have the following result.

Corollary 2.5.7 (Graph braid groups are special; [Abr00, Gen19a, Gen21]). Let n ą 1 and

let Γ be a finite, connected graph. Then BnpΓq – RBnpΓ
1q, where Γ1 is obtained from Γ by

subdividing edges. In particular, BnpΓq is the fundamental group of the connected compact

special cube complex UCnpΓ1q.

2.6 Quasi-median graphs

The notion of a quasi-median graph was originally introduced by Mulder in [Mul80] as

a generalisation of median graphs (see Definition 2.4.3) and further developed by Bandelt–

Mulder–Wilkeit [BMW94]. However, these were not studied in the context of geometric group

theory until recently, when Genevois explored their coarse geometry, drawing on analogies

with the cubical geometry of median graphs [Gen17]. In this section we shall study this

geometry, paying particular attention to its application to graph products.

There are numerous equivalent definitions of a quasi-median graph (see [BMW94, Theo-

rem 1]). We shall focus on the one given below.

Definition 2.6.1 (Quasi-median graph). A connected simplicial metric graph X is weakly

modular if it satisfies the following two conditions.

(1) (Triangle condition.) Let u, v, w be vertices of X such that v is adjacent to w and

both v and w are at distance k ě 2 from u. Then there exists a vertex x of X that is

adjacent to v and w and at distance k ´ 1 from u. See Figure 2.13.
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(2) (Quadrangle condition.) Let u, v, w, z be vertices of X such that both v and w are

adjacent to z and at distance k ´ 1 ě 2 from u, and z is at distance k from u. Then

there exists a vertex x of X that is adjacent to v and w and at distance k ´ 2 from u.

See Figure 2.13.

We say X is quasi-median if it is weakly modular and does not contain K´
4 or K3,2 as induced

subgraphs; see Figure 2.12.

Figure 2.12: The graphs K´
4 (left) and K3,2 (right).

Note that as a consequence of this definition, every cycle in a quasi-median graph is

contained in a union of 3–cycles and 4–cycles. Indeed, given an n–cycle with n ě 5, one can

apply the triangle condition (if n is odd) or the quadrangle condition (if n is even) in order

to cover this n–cycle with cycles of strictly shorter length. By applying these conditions

inductively, one achieves the desired result; see Figure 2.13. Moreover, a result of Genevois

says that a quasi-median graph is a median graph precisely when it does not contain any

cycles of length 3.

u

v w

x

u

x

v

w

z

Figure 2.13: The triangle and quadrangle conditions break up cycles into triangles and
squares.
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Proposition 2.6.2 ([Gen17, Corollary 2.92]). A graph is median if and only if it is quasi-

median and contains no 3–cycles.

In this way, the appropriate generalisation of a cube complex in the context of quasi-

median graphs is that of a prism complex. Just as a cube may be viewed as a product of

1–simplices, a prism is defined to be a product of simplices of any dimension. In the following

section, we shall explore the geometry of such complexes for the specific example of graph

products. For a more general treatment of this quasi-median geometry, the interested reader

is directed to [Gen17].

2.6.1 Graph products

Definition 2.6.3 (Graph product). Let Γ be a finite simplicial graph with vertex set V pΓq

and edge set EpΓq, and with each vertex v P V pΓq labelled by a non-trivial group Gv. Then

the graph product GΓ is the group

GΓ “

˜

˚
vPV pΓq

Gv

¸O

xxrgv, gws | gv P Gv, gw P Gw, tv, wu P EpΓqyy .

We call the Gv the vertex groups of the graph product GΓ.

Note that if all vertex groups of GΓ are copies of Z, then GΓ is the right-angled Artin

group with defining graph Γ, and if all vertex groups are copies of Z{2Z, then GΓ is the

corresponding right-angled Coxeter group.

We wish to study the geometry of GΓ by adapting the cubical geometry of right-angled

Artin groups. To this end, we will first need to eliminate any badly behaved geometry

occurring within vertex groups. We do this by replacing the usual word metric with the

syllable metric.

Definition 2.6.4 (Syllable metric on a graph product). Let GΓ be a graph product. The

graph SpΓq is the metric graph whose vertices are elements of GΓ and where g, h P GΓ are
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joined by an edge of length 1 labelled by g´1h if there exists a vertex v of Γ such that

g´1h P Gv. We denote the distance in SpΓq by dsylp¨, ¨q and say dsylpg, hq is the syllable

distance between g and h. When convenient, we will use |g|syl to denote dsylpe, gq and call it

the syllable length of g.

Notice that all cosets of vertex groups have diameter 1 under the syllable metric, thus

trivialising their geometry. Therefore, when working with SpΓq, instead of expressing an

element g P GΓ as a word in the generators of GΓ, it is more geometrically meaningful to

express g as a product of any elements of vertex groups.

Definition 2.6.5 (Syllable expressions). Let GΓ be a graph product and g P GΓ. If g “

s1 . . . sn where each si P Gvi for some vi P V pΓq, then we say s1 . . . sn is a syllable expression

for g. If s1 . . . sn is a syllable expression for g and n “ dsylpe, gq, then we say s1 . . . sn is a

reduced syllable expression for g. In this case, n is the smallest number of terms possible for

any syllable expression of g.

A foundational fact about graph products is that any syllable expression can be reduced

by applying a sequence of canonical moves.

Theorem 2.6.6 (Reduction algorithm for graph products; [Gre90, Theorem 3.9]). Let GΓ

be a graph product and g P GΓ. If s1 . . . sn is a reduced syllable expression for g and t1 . . . tm

is a syllable expression for g, then t1 . . . tm can be transformed into s1 . . . sn by applying a

sequence of the following three moves.

• Remove a term ti if ti “ e.

• Replace consecutive terms ti and ti`i belonging to the same vertex group Gv with the

single term titi`1 P Gv.

• Exchange the position of consecutive terms ti and ti`1 when ti P Gv and ti`1 P Gw with

v joined to w by an edge in Γ.
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When each of the vertex groups of the graph product is finitely generated, Theorem 2.6.6

implies that the word length of any g P GΓ will be the sum of the word lengths of the terms

in any reduced syllable expression for g.

Corollary 2.6.7 (Reduced syllable expressions minimise word length). Let GΓ be a graph

product of finitely generated groups. For each v P V pΓq, let Sv be a finite generating set

for the vertex group Gv, and let |g| be the word length of g P GΓ with respect to the finite

generating set S “
Ť

vPV pΓq Sv. For all g P GΓ, if s1 . . . sn is a reduced syllable expression for

g, then

|g| “
n
ÿ

i“1

|si|.

Proof. Let s1 . . . sn be a reduced syllable expression for g P GΓ. There exist w1, . . . , wm P S

such that |g| “ m and g “ w1 . . . wm. Since every element of S is an element of one of

the vertex groups of GΓ, the product w1 . . . wm is also a syllable expression for g. Thus,

by applying a finite number of the moves from Theorem 2.6.6, we can transform w1 . . . wm

into s1 . . . sn. We can therefore write each si as a product si “ wσip1q . . . wσipmiq, where

mi ď m and σi is a permutation of t1, . . . ,mu. Further, if i ‰ k, then tσip1q, . . . , σipmiqu X

tσkp1q, . . . , σkpmkqu “ H. Thus,
řn
i“1 |si| ď

řn
i“1mi ď m. However, m “ |g| ď

řn
i“1 |si| by

definition, so |g| “
řn
i“1 |si|.

Another critical consequence of Theorem 2.6.6 is that the terms in a reduced syllable

expression for an element of a graph product are well-defined up to applying the commutation

relation. This ensures that the following notions are well-defined for an element of a graph

product.

Definition 2.6.8 (Syllables and support of an element). Let GΓ be a graph product of

groups and let g P GΓ. If s1 . . . sn is a reduced syllable expression for g, then we call the

si the syllables of g and use supppgq to denote the induced subgraph of Γ spanned by the

vertices tv1, . . . , vnu, where si P Gvi . We call supppgq the support of g.
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Another hallmark feature of graph products is their rich collection of subgroups corre-

sponding to induced subgraphs of the defining graph.

Definition 2.6.9 (Graphical subgroups). Let GΓ be a graph product with vertex groups

tGv : v P V pΓqu and let Λ Ď Γ be an induced subgraph. We use xΛy to denote the subgroup

of GΓ generated by tGv : v P V pΛqu. We call such subgroups the graphical subgroups of GΓ.

Note, each subgroup xΛy is isomorphic to the graph product GΛ.

Convention 2.6.10. Whenever we consider a subgraph Λ Ď Γ, we will assume that Λ is an

induced subgraph of Γ.

Since the graphical subgroups are themselves graph products, we can also define the

syllable metric on them and their cosets.

Definition 2.6.11. Let GΓ be a graph product, g P GΓ, and Λ Ď Γ. Let SpΛq be the metric

graph defined in Definition 2.6.4 for the graph product xΛy, and let SpgΛq denote the metric

graph whose vertices are elements of the coset gxΛy and where gx and gy are joined by an

edge of length 1 if x and y are joined by an edge in SpΛq.

Remark 2.6.12. Geodesics in SpΓq between two elements k and h are labelled by the

reduced syllable forms of k´1h. The induced subgraph of SpΓq with vertex set gxΛy is

therefore convex and graphically isomorphic to SpgΛq via the identity map. In particular,

the distance between two vertices k, h of SpgΛq is dsylpk, hq.

Remark 2.6.13. The graph theoretic properties of subgraphs Λ of Γ have important alge-

braic significance in the context of the graph productGΓ itself. A join subgraph of Γ generates

a subgroup of GΓ which splits as a direct product, while xstpΛqy is the largest subgroup of

GΓ which splits as a direct product with xΛy as one of the factors: xstpΛqy – xΛy ˆ xlkpΛqy.

Moreover, since every element of xΛy commutes with every element of xlkpΛqy, the reduced

syllable form tells us that we can always write an element g P xstpΛqy in the form g “ λl,

where λ P xΛy and l P xlkpΛqy.
52



Genevois observed that the graph SpΓq is a quasi-median graph [Gen17, Proposition 8.2].

Moreover, he showed that the only non-cubical behaviour arises from the vertex groups.

Proposition 2.6.14 ([Gen17, Lemmas 8.5, 8.8]). Two adjacent edges of SpΓq are the edges

of a triangle if and only if they are labelled by elements of the same vertex group. Two

adjacent edges of SpΓq are the edges of an induced square if and only if they are labelled by

elements of adjacent vertex groups. In this case, the opposite edges of the square are labelled

by the same vertex groups.

The above proposition means that while SpΓq is not a cube complex, it is the 1–skeleton

of a complex built from prisms glued isometrically along subprisms. Henceforth, we will

interchangeably refer to SpΓq and the canonical cell complex of which it is the 1–skeleton.

Definition 2.6.15 (Prism). A prism P of SpΓq is a subcomplex which can be written as a

product of simplices P “ T1 ˆ ¨ ¨ ¨ ˆ Tm.

Since a cube is a product of 1–simplices, prisms generalise the cubes in a cube complex.

Genevois used the prisms in SpΓq to build hyperplanes with very similar properties to those

in CAT(0) cube complexes. We present a slightly different, but equivalent, construction of

these hyperplanes in SpΓq.

Recall that in a cube complex, hyperplanes are built from mid-cubes. If we view each

cube in a cube complex as a product
“

´1
2
, 1

2

‰n, we obtain a mid-cube by restricting one of

the intervals
“

´1
2
, 1

2

‰

to 0. In much the same way, we obtain a mid-prism from a prism by

performing a barycentric subdivision on one of its simplices. If this simplex is a 1–simplex,

this just gives us the midpoint of the edge.

Definition 2.6.16 (Mid-prism). Given an n–simplex T in SpΓq, perform a modified barycen-

tric subdivision as follows. First add a vertex at the barycentre of each sub-simplex of

T . Then for each 2 ď k ď n, add edges connecting the barycentre of each k–simplex in

T to the barycentres of each of its pk ´ 1q–sub-simplices; see Figure 2.14. The complex
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Figure 2.14: The mid-prism of a 3–simplex and a mid-prism of the product of a 2–simplex
and a 1–simplex.

we have added through this procedure is then the 1–skeleton of a canonical simply con-

nected cell complex, which we denote by KpT q. We call KpT q the mid-prism of T . More

generally, we define a mid-prism Ki of a prism P “ T1 ˆ ¨ ¨ ¨ ˆ Tm to be the product

Ki “ T1 ˆ . . . Ti´1 ˆKpTiq ˆ Ti`1 ˆ ¨ ¨ ¨ ˆ Tm.

Note that the simplices in SpΓq that arise from infinite vertex groups have infinitely

many vertices. A simplex with infinitely many vertices may still be assigned a mid-prism, by

constructing mid-prisms for each of its finite sub-simplices. The inductivity of the barycentric

subdivision procedure ensures that these mid-prisms all agree with each other.

A hyperplane of a cube complex is defined to be a maximal connected union of mid-cubes.

In the same way, we can construct hyperplanes in SpΓq by taking maximal connected unions

of mid-prisms.

Definition 2.6.17 (Hyperplane, carrier). Construct an equivalence relation „ on the edges

of SpΓq by defining E1 „ E2 if E1 and E2 are either opposite sides of a square or two sides of

a triangle, and then extending transitively. We say the hyperplane dual to the equivalence

class rEs is the union of all mid-prisms that intersect edges of rEs; see Figure 2.15. The

carrier of the hyperplane dual to rEs is the union of all prisms that contain edges of rEs.

If a geodesic γ or a coset gxΛy contains an edge that is dual to a hyperplane H, then we

say H crosses γ or gxΛy. We say a hyperplane H separates two subsets X and Y of SpΓq if

X and Y are each entirely contained in different connected components of SpΓqrH.
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Figure 2.15: A hyperplane (blue) inside its carrier, and an associated combinatorial hyper-
plane (red).

Each hyperplane of a cube complex comes with two corresponding combinatorial hyper-

planes, obtained by restricting intervals to ´1
2
or 1

2
instead of 0 when constructing mid-cubes.

The advantage of these combinatorial hyperplanes is that they form subcomplexes of the cube

complex. In SpΓq, we obtain combinatorial hyperplanes by restricting a simplex to a vertex

instead of performing barycentric subdivision when constructing mid-prisms.

Definition 2.6.18 (Combinatorial hyperplane). Let P “ T1 ˆ ¨ ¨ ¨ ˆ Tm be a prism, where

each Ti is an ni–simplex. Each mid-prism Ki splits P into ni sectors, each containing a

subcomplex T1 ˆ ¨ ¨ ¨ ˆ tvku ˆ ¨ ¨ ¨ ˆ Tm, where vk is a vertex of Ti. Given a hyperplane H of

SpΓq, consider the union of all such subcomplexes obtained from the mid-prisms of H. We

call each connected component of this union a combinatorial hyperplane associated to H; see

Figure 2.15.

Remark 2.6.19 (Labelling hyperplanes). Proposition 2.6.14 tells us that if two edges E1

and E2 of SpΓq are sides of a common triangle or opposite sides of a square, then they are

labelled by elements of the same vertex group. It follows that all edges that a hyperplane H

intersects are labelled by elements of the same vertex group Gv. We therefore label H with

the vertex group Gv. Moreover, the edges of the associated combinatorial hyperplanes will

55



then be labelled by elements of xlkpvqy. This a fact that will be exploited repeatedly in our

proofs in Chapter 4.

Genevois established that the hyperplanes of SpΓq maintain many of the fundamental

properties from the cubical setting (cf. Proposition 2.4.13).

Proposition 2.6.20 (Properties of hyperplanes; [Gen17, Section 2]).

(1) Every hyperplane of SpΓq separates SpΓq into at least two connected components.

(2) If H is a hyperplane of SpΓq, then any combinatorial hyperplane for H is convex in

SpΓq.

(3) If H is a hyperplane of SpΓq, then any connected component of SpΓq rH is convex in

SpΓq.

(4) A continuous path γ in SpΓq is a geodesic if and only if γ intersects each hyperplane at

most once.

(5) If two hyperplanes cross, then they are labelled by adjacent vertex groups.

Remark 2.6.21. Item (4) implies that a hyperplane H of SpΓq crosses a geodesic connecting

a pair of points x, y if and only if H separates x and y. Thus, if γ1, . . . , γn is a collection of

geodesics in SpΓq such that γ1 Y ¨ ¨ ¨ Y γn forms a loop and H is a hyperplane that crosses

γi, then H must also cross γj for some j ‰ i.

It is important to note that while we still use the terms ‘hyperplane’ and ‘combinatorial

hyperplane’ here, they differ from those of cube complexes in a critical way: the complement

of a hyperplane H in SpΓq may have more than two connected components, and thus H may

have more than two associated combinatorial hyperplanes.

Genevois and Martin use the convexity of the cosets gxΛy to construct a nearest point

projection onto gxΛy, which we call a gate map. The map and its properties are given
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below, and will be essential tools throughout Chapter 4. Again, these gate maps share many

properties with their cubical counterparts (cf. Proposition 2.4.14).

Proposition 2.6.22 (Gate onto graphical subgroups; [GM18, Section 2]). Let GΓ be a

graph product. For all Λ Ď Γ and g P GΓ, there exists a map ggΛ : GΓ Ñ gxΛy satisfying the

following properties.

(1) For all k, h P GΓ, dsylpggΛphq, ggΛpkqq ď dsylph, kq.

(2) For all x, h P GΓ, h ¨ ggΛpxq “ ghgΛphxq. In particular, ggΛpxq “ g ¨ gΛpg
´1xq.

(3) For all x P GΓ, ggΛpxq is the unique element of gxΛy such that dsylpx, ggΛpxqq “ dsylpx, gxΛyq.

(4) Any hyperplane in SpΓq that separates x from ggΛpxq separates x from gxΛy.

(5) If x, y P GΓ and H is a hyperplane in SpΓq separating ggΛpxq and ggΛpyq, then H

separates x and y, so that x and ggΛpxq (resp. y and ggΛpyq) are contained in the same

connected component of SpΓqrH.

We also obtain a convenient algebraic formulation for the gate map of an element g onto

a graphical subgroup xΛy by considering the collection of all possible initial subwords of g

that are contained in xΛy.

Definition 2.6.23 (Prefixes and suffixes). Let g P GΓ. If there exist p, s P GΓ so that g “ ps

and |g|syl “ |p|syl ` |s|syl, we call p a prefix of g and s a suffix of g. We shall use prefixpgq

and suffixpgq to respectively denote the collections of all prefixes and suffixes of g.

Lemma 2.6.24 (Algebraic description of the gate map). For all Λ Ď Γ and g P GΓ, there

exists p P prefixpgqX xΛy so that gΛpgq “ p. Further, p is the element of prefixpgqX xΛy with

the largest syllable length.

Proof. Since prefixpgqXxΛy is a finite set, there exists p P prefixpgqXxΛy so that |p1|syl ď |p|syl

for all p1 P prefixpgq X xΛy. Let x “ gΛpgq and let s be the suffix of g corresponding to p.
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If there exists a non-identity element y P prefixpsq X xΛy, then py would be an element of

prefixpgq X xΛy with syllable length strictly larger than p. Since this is impossible by choice

of p, we have prefixpsq X xΛy “ teu. This implies |x´1ps|syl ě |s|syl since x´1p P xΛy, and we

have the following calculation:

dsylpx, gq “ |x´1ps|syl ě |s|syl “ |p
´1g|syl “ dsylpp, gq.

Since p P xΛy, this implies x “ p, as x is the unique element of xΛy which minimises the

syllable distance of g to xΛy (Proposition 2.6.22(3)).

Definition 2.6.25. Denote the element p of prefixpgq X xΛy with largest syllable length by

prefixΛpgq, and define suffixΛpgq “ pprefixΛpg
´1qq´1.

2.7 Hierarchical hyperbolicity

Hierarchical hyperbolicity is a quasi-isometry invariant property which combines elements

of both coarse Euclidean and hyperbolic geometry. This version of non-positive curvature

was devised by Behrstock, Hagen, and Sisto by axiomatising Masur and Minsky’s treat-

ment of mapping class groups using subsurface projections and curve graphs [MM99, MM00,

BHS17b]. The geometric information of a hierarchically hyperbolic space X (commonly ab-

breviated ‘HHS’) is encoded in a collection of projections onto hyperbolic spaces associated

to X. These projections are arranged via a partial order called nesting, and flats (quasi-

isometrically embedded copies of Zn) are encoded via a combinatorial relation between the

projections called orthogonality. Due to the extra structure endowed by the projections and

relations, one must be careful to distinguish a hierarchically hyperbolic space from a hierar-

chically hyperbolic group. A hierarchically hyperbolic group (commonly abbreviated ‘HHG’)

is not merely a group whose Cayley graph is an HHS; the hierarchy structure must also be

equivariant with respect to the group action.
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Examples of HHGs include mapping class groups [MM99, MM00, Beh06, BKMM12]

and fundamental groups of special cube complexes [BHS17b]; see Section 2.7.4 for more

details on the HHG structure of the latter. Examples of HHSs include Teichmüller space

with the Teichmüller or Weil–Petersson metric ([Raf07, Dur16, EMR17] and [Bro03, Beh06,

BKMM12] respectively) and fundamental groups of closed 3–manifolds with no Nil or Sol

components [BHS19, Theorem 10.1]. Note that these 3–manifold groups are conjectured not

to be HHGs in general [BHS19, Remark 10.2].

We break the definition of an HHG given by Behrstock, Hagen, and Sisto in [BHS19]

into three parts in order to more clearly organise the structure of our arguments. First

we define what we call the proto-hierarchy structure, which sets up the defining information

(relations and projections) for the HHG structure. We then give the more advanced geometric

properties that we need to impose for the group to be a hierarchically hyperbolic space. We

then define a hierarchically hyperbolic group to be a group whose Cayley graph is an HHS in

such a way that the HHS structure agrees with the group structure.

Definition 2.7.1 (Proto-hierarchy structure). Let X be a quasi-geodesic space and E ą 0.

An E–proto-hierarchy structure on X is an index set S and a set tCpW q : W P Su of

geodesic spaces pCpW q, dW q such that the following axioms are satisfied.

(1) (Projections.) For each W P S, there exists a projection πW : X Ñ 2CpW q such that

for all x P X , πW pxq ‰ H and diampπW pxqq ď E. Moreover, each πW is pE,Eq–coarsely

Lipschitz and CpW q Ď NEpπW pX qq for all W P S.

(2) (Nesting.) If S ‰ H, then S is equipped with a partial order Ď and contains a unique

Ď–maximal element. When V Ď W , we say V is nested in W . For each W P S, we

denote by SW the set of all V P S with V Ď W . Moreover, for all V,W P S with

V Ĺ W there is a specified non-empty subset ρVW Ď CpW q with diampρVW q ď E.

(3) (Orthogonality.) S has a symmetric relation called orthogonality. If V and W are
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orthogonal, we write V K W and require that V andW are not Ď–comparable. Further,

whenever V Ď W and W K U , we require that V K U . We denote by SK
W the set of all

V P S with V K W .

(4) (Transversality.) If V,W P S are not orthogonal and neither is nested in the other,

then we say V,W are transverse, denoted V&W . Moreover, for all V,W P S with V&W

there are non-empty sets ρVW Ď CpW q and ρWV Ď CpV q each of diameter at most E.

We use S to denote the entire proto-hierarchy structure, including the index set S, spaces

tCpW q : W P Su, projections tπW : W P Su, and relations Ď, K, &. We call the elements of

S the domains of S and call the set ρVW the relative projection from V to W . The number

E is called the hierarchy constant for S.

Definition 2.7.2 (Hierarchically hyperbolic space). An E–proto-hierarchy structure S on a

quasi-geodesic space X is an E–hierarchically hyperbolic space structure (E–HHS structure)

on X if it satisfies the following additional axioms.

(1) (Hyperbolicity.) For each W P S, CpW q is E–hyperbolic.

(2) (Finite complexity.) Any set of pairwise Ď–comparable elements has cardinality at

most E.

(3) (Containers.) For each W P S and U P SW with SW X SK
U ‰ H, there exists

Q P SW r tW u such that V Ď Q whenever V P SW XSK
U . We call Q the container of

U in W .

(4) (Uniqueness.) There exists a function θ : r0,8q Ñ r0,8q so that for all r ě 0, if

x, y P X and dX px, yq ě θprq, then there exists W P S such that dW pπW pxq, πW pyqq ě r.

We call θ the uniqueness function of S.

(5) (Bounded geodesic image.) For all x, y P X and V,W P S with V Ĺ W , if
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dV pπV pxq, πV pyqq ě E, then every CpW q–geodesic from πW pxq to πW pyq must inter-

sect the E–neighbourhood of ρVW .

(6) (Large links.) For all W P S and x, y P X , there exists L “ tV1, . . . , Vmu Ď SW r tW u

such that m is at most EdW pπW pxq, πW pyqq ` E, and for all U P SW r tW u, either

U P SVi for some i, or dUpπUpxq, πUpyqq ď E.

(7) (Consistency.) If V&W , then

min
 

dW pπW pxq, ρVW q, dV pπV pxq, ρ
W
V q

(

ď E

for all x P X . Further, if U Ď V and either V Ĺ W or V&W and W M U , then

dW pρUW , ρ
V
W q ď E.

(8) (Partial realisation.) If tViu is a finite collection of pairwise orthogonal elements of

S and pi P CpViq for each i, then there exists x P X so that:

• dVipπVipxq, piq ď E for all i;

• for each i and each W P S, if Vi Ĺ W or W&Vi, we have dW pπW pxq, ρViW q ď E.

We call a quasi-geodesic space X an E–hierarchically hyperbolic space (E–HHS) if there

exists an E–hierarchically hyperbolic space structure on X . We use the pair pX ,Sq to denote

a hierarchically hyperbolic space equipped with the specific HHS structure S.

Definition 2.7.3 (Hierarchically hyperbolic group). Let G be a finitely generated group

and let X be the Cayley graph of G with respect to some finite generating set. We say G is

an E–hierarchically hyperbolic group (E–HHG) if:

(1) The space X admits an E–HHS structure S.

(2) There is a Ď–, K–, and &–preserving action of G on S by bijections such that S contains

finitely many G–orbits.
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(3) For each W P S and g P G, there exists an isometry gW : CpW q Ñ CpgW q satisfying

the following for all V,W P S and g, h P G.

• The map pghqW : CpW q Ñ CpghW q is equal to the map ghW ˝ hW : CpW q Ñ

CpghW q.

• For each x P X, gW pπW pxqq and πgW pg ¨ xq are at most E–far apart in CpgW q.

• If V&W or V Ĺ W , then gW pρVW q and ρ
gV
gW are at most E–far apart in CpgW q.

The structure S satisfying (1)–(3) is called an E–hierarchically hyperbolic group (E–

HHG) structure on G. We use pG,Sq to denote a group G equipped with a specific HHG

structure S.

Remark 2.7.4. Since the property of being an HHS is invariant under quasi-isometry

[BHS19, Propositon 1.10], one may also obtain an HHG structure for a group G by finding

an HHS pX,Sq such that G acts on X geometrically and satisfies Properties (2) and (3). In

particular, the Milnor–Švarc Lemma tells us that this HHG structure is given by composing

the projections in pX,Sq with an orbit map GÑ X, g ÞÑ g ¨ x for some fixed x P X.

We may deduce a number of additional useful properties as a direct consequence of these

axioms, many of which shall prove essential in Chapter 3. For example, Durham–Hagen–

Sisto show that the partial realisation axiom implies that the relative projections ρWQ and ρVQ

of orthogonal domains W,V P S coarsely coincide. Note, ρWQ and ρVQ are both defined when

W&Q or W Ĺ Q and V&Q or V Ĺ Q.

Lemma 2.7.5 ([DHS17, Lemma 1.5]). Let pX ,Sq be an E–HHS. If W,V P S with W K V ,

and Q P S with ρWQ and ρVQ both defined, then dQpρWQ , ρ
V
Qq ď 2E.

One may also deduce a strengthened version of the partial realisation axiom, called the

realisation theorem, which characterises which tuples in the product
ś

V PSCpV q are coarsely

the image of a point in X . Essentially, it says if a tuple pbV q P
ś

V PSCpV q satisfies the
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consistency and bounded geodesic image axioms of an almost HHS, then there exists a point

x P X such that πV pxq is uniformly close to bV for each V P S. While it is straightforward

to state what it means for a tuple to satisfy the consistency axiom—either dW pbW , ρVW q or

dV pbV , ρWV q is less than E whenever V&W—it is more opaque as to how a tuple can satisfy

the bounded geodesic image axiom. For this we need the following map from CpW q to CpV q

when V Ĺ W .

Definition 2.7.6 (Downward relative projection). Let S be an E–HHS structure for X .

For each W P S and p P CpW q, pick a point xp,W P X so that πW pxp,W q is within E of p. If

V,W P S with V Ĺ W , then define the map ρWV : CpW q Ñ 2CpV q by ρWV ppq “ πV pxp,W q. We

call the map ρWV a downward relative projection from W to V .

With the downward relative projection, we can formulate the necessary conditions for a

tuple pbV qV PS to be realised by point in X . In the following, one should think of the first

condition as saying that the tuple satisfies the consistency axiom and the second as saying

the tuple satisfies the bounded geodesic image axiom.

Definition 2.7.7 (Consistent tuple). Let pX ,Sq be an HHS and let bV P CpV q for each

V P S. For each κ ě 0, the tuple pbV qV PS is κ–consistent if:

(1) whenever V&W , mintdW pbW , ρVW q, dV pbV , ρ
W
V qu ď κ;

(2) whenever V Ĺ W , mintdW pbW , ρVW q, diampbV Y ρ
W
V pbW qqu ď κ.

Given x P X , the tuple pπV pxqqV PS is always consistent; properties p1q and p2q follow from

the consistency and bounded geodesic image axioms for pX ,Sq, respectively. Conversely, the

realisation theorem says that all consistent tuples are coarsely the image of point in X .

Lemma 2.7.8 (Projections of points are consistent, [BHS19, Proposition 1.11]). Let S be

an E–HHS structure for X . If x P X , then pπV pxqqV PS is a 3E–consistent tuple.
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Theorem 2.7.9 (The realisation of consistent tuples, [BHS19, Theorem 3.1]). Let pX ,Sq

be an HHS. There exists a function τ : r0,8q Ñ r0,8q so that if pbV qV PS is a κ–consistent

tuple, then there exists x P X so that dV px, bV q ď τpκq for all V P S.

Furthermore, the relative projections of an HHS also satisfy the inequalities in the defi-

nition of a consistent tuple.

Lemma 2.7.10 (ρ–consistency, [BHS19, Proposition 1.8]). Let S be an E–HHS structure

for X and V,W,Q P S. Suppose W&Q or W Ĺ Q and W&V or W Ĺ V . Then we have

the following.

(1) If Q&V , then mintdQpρWQ , ρ
V
Qq, dV pρ

Q
V , ρ

W
V qu ď 2E.

(2) If Q Ď V , then mintdV pρ
Q
V , ρ

W
V q, diampρWQ Y ρ

V
Qpρ

W
V qqu ď 2E.

One remarkable and far less straightforward consequence of the HHS axioms is the exis-

tence of a Masur–Minsky style distance formula, which allows for distances in an HHS to be

expressed as a sum of distances in the associated hyperbolic spaces.

Theorem 2.7.11 (Distance formula; [BHS19, Theorem 4.5]). Let pX,Sq be an HHS. There

exists σ0 ą 0 such that for all σ ě σ0 there exist K ě 1 and L ě 0 such that for all x, y P X,

1

K

ÿ

UPS

ttdUpx, yquuσ ´ L ď dXpx, yq ď K
ÿ

UPS

ttdUpx, yquuσ ` L

where we define ttNuuσ “ N if N ě σ and 0 if N ă σ.

2.7.1 Detecting other forms of hyperbolicity in HHSs

One powerful tool of hierarchical hyperbolicity is the ability to extract information regarding

other generalisations of hyperbolicity from the HHS structure. In this section, we shall outline

methods of detecting δ–hyperbolicity, acylindrical hyperbolicity, and relative hyperbolicity

in HHSs.
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Morally, detecting forms of hyperbolicity (or lack thereof) amounts to analysing patterns

of orthogonality occurring within the HHS structure. For example, a theorem of Behrstock–

Hagen–Sisto tells us that an HHS is hyperbolic precisely when there is no non-trivial orthog-

onality.

Theorem 2.7.12 (Characterisation of hyperbolicity; [BHS17c, Corollary 2.16]). Let pX ,Sq

be an HHS. The following are equivalent.

• X is hyperbolic.

• (Bounded orthogonality.) There exists a constant D ě 0 such that

minpdiampCpUqq, diampCpV qqq ď D

for all U, V P S satisfying UKV .

In the case of acylindrical hyperbolicity, a result of Behrstock–Hagen–Sisto tells us that

every HHG G acts acylindrically on its Ď–maximal hyperbolic space; however, G is only

acylindrically hyperbolic when this hyperbolic space is unbounded.

Theorem 2.7.13 (Criteria for acylindrical hyperbolicity; [BHS17b, Corollary 14.4]). Let

pG,Sq be an HHG and let S be the unique Ď–maximal element of S. Then G acts acylin-

drically on CpSq. In particular, if CpSq is unbounded and G is not virtually cyclic, then G

is acylindrically hyperbolic.

A result of Russell tells us that if collections of intersecting non-negatively curved regions

in an HHG can be isolated from each other (the isolated orthogonality criterion), then the

HHG is relatively hyperbolic and these isolated collections form the peripheral subgroups

[Rus20, Theorem 1.1].
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Definition 2.7.14 (Isolated orthogonality). Let pX,Sq be an HHS and let S be the Ď–

maximal element of S. We say pX,Sq has isolated orthogonality if there exists a collection

of domains I Ď Sr tSu satisfying the following conditions.

(1) For all V,W P S with V KW , there exists U P I such that V,W Ď U .

(2) SU1 XSU2 “ H for all pairs of distinct U1, U2 P I.

Theorem 2.7.15 (Criterion for relative hyperbolicity; [Rus20, Theorem 1.1]). A hierarchi-

cally hyperbolic space pG,Sq is relatively hyperbolic if S has isolated orthogonality.

A characterisation of thickness is currently unknown for HHGs in their full generality.

In fact, it is not even known if HHGs satisfy a strict dichotomy between relative hyperbol-

icity and thickness, although this is conjectured to be true, and has been shown in many

cases. For example, Behrstock–Druţu–Mosher show that mapping class groups are either

hyperbolic or thick of order 1 [BDM09, Theorem 8.1], and Brock–Masur build upon results

of Behrstock–Druţu–Mosher to show that Teichmüller space with the Weil–Petersson metric

is either hyperbolic, relatively hyperbolic, or thick of order 1 [BDM09, Theorem 12.5][BM08,

Theorems 1, 6]. Characterisations of thickness and relative hyperbolicity also exist for right-

angled Artin and Coxeter groups; see Theorems 2.4.21 and 2.4.26.

2.7.2 Relative HHSs

In [BHS19], Behrstock, Hagen, and Sisto introduce relative HHSs, a broader class of spaces

obtained by relaxing the hyperbolicity axiom of an HHS. In Chapter 4, we show that all

graph products satisfy this version of hierarchical hyperbolicity.

Definition 2.7.16 (Relative HHS/HHG). Let S be an E–proto-hierarchy structure for a

quasi-geodesic space X . We say S is a relatively E–hierarchically hyperbolic space structure

for X if S satisfies all of the HHS axioms in Definition 2.7.1 except the hyperbolicity axiom,

and instead satisfies the following weaker version.
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(11) (Hyperbolicity) For each W P S, either W is Ď–minimal or CpW q is E–hyperbolic.

If S is a relative HHS structure for X , we say the pair pX ,Sq is a relatively E–hierarchically

hyperbolic space. Furthermore, if X is the Cayley graph of a finitely generated group G with

respect to some finite generating set, and G satisfies conditions (2)–(3) of Definition 2.7.3,

then S is called a relatively E–hierarchically hyperbolic group structure on G, and we say

the pair pG,Sq is a relatively E–hierarchically hyperbolic group.

Remark 2.7.17. Despite this weakening of the hyperbolicity axiom, relative hierarchical

hyperbolicity still retains many of the important properties of hierarchical hyperbolicity; for

example, relative HHSs satisfy the distance formula given in Theorem 2.7.11, and relative

HHGs are acylindrically hyperbolic under the conditions of Theorem 2.7.13.

2.7.3 Almost HHSs

Just as relative HHSs are obtained by weakening the hyperbolicity axiom, one can obtain an

almost HHS by weakening the container axiom. The first and foremost consequence of the

container axiom is that every HHS structure has ‘finite rank’, i.e., a uniform bound on the

size of any pairwise orthogonal collection of domains.

Lemma 2.7.18 ([BHS19, Lemma 2.1]). Let pX ,Sq be an E–hierarchically hyperbolic space.

If W1, . . . ,Wn is a pairwise orthogonal collection of elements of S, then n ď E.

Observing that many consequences of being a hierarchically hyperbolic space structure

still apply when the container axiom is replaced with the conclusion of Lemma 2.7.18, Abbott,

Behrstock, and Durham coined the term almost HHS structure to describe such spaces.

Definition 2.7.19 (Almost HHS). Let S be an E–proto-hierarchy structure for a quasi-

geodesic space X . We say S is an almost E–hierarchically hyperbolic space structure for X if

S satisfies all of the HHS axioms in Definition 2.7.1 except the container axiom, and instead

satisfies the following restriction on the orthogonality relation.
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(31) (Finite rank) IfW1, . . . ,Wn is a pairwise orthogonal collection of elements of S, then

n ď E.

If S is an almost HHS structure for X , we say the pair pX ,Sq is an almost hierarchically

hyperbolic space.

Remark 2.7.20. Lemma 2.7.5, Lemma 2.7.8, Theorem 2.7.9, and Lemma 2.7.10 also hold

in the almost HHS setting, since the only use of the container axiom in their proofs is Lemma

2.7.18.

Using this weakened axiom, Abbott, Behrstock, and Durham were able to show several

impressive results, including a complete characterisation of contracting quasigeodesics in

HHGs [ABD21]. In Chapter 3, we show that every almost HHS structure can in fact be

upgraded to an HHS structure, simplifying Abbott–Behrstock–Durham’s proofs significantly.

This also has implications for Chapter 4, where it enables us to show that any graph product

of HHGs can be endowed with an HHG structure.

2.7.4 HHS structures on CAT(0) cube complexes

We shall conclude this chapter by providing explicit examples of HHS structures for CAT(0)

cube complexes, which in turn will be key in constructing HHG structures on graph braid

groups in Chapter 5. As shown in [BHS17b], HHS structures can be put on CAT(0) cube

complexes by studying factor systems.

Definition 2.7.21 (Factor system). A factor system F on a CAT(0) cube complex X is a

collection of subcomplexes of X with the following properties.

(1) X P F.

(2) Each F P F is non-empty and convex.

(3) There exists ∆ ě 1 such that each x P Xp0q is contained in at most ∆ elements of F.
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(4) F contains all non-trivial convex subcomplexes parallel to combinatorial hyperplanes of

X.

(5) There exists ξ ě 0 such that for all F, F 1 P F, either gF pF 1q P F or diampgF pF
1qq ă ξ.

Behrstock, Hagen, and Sisto show that a special cube complex C with finitely many

hyperplanes has a canonical factor system on its universal cover X. This factor system is

obtained by considering the collection of all subgraphs of the crossing graph of C.

Definition 2.7.22 (Crossing graph). Let X be a cube complex. The crossing graph Ξ of X

is defined as follows.

• The vertices of Ξ are the hyperplanes of X.

• Two vertices of Ξ are connected by an edge if the corresponding hyperplanes cross in

X.

Let H be the collection of hyperplanes of C, let Ξ be the crossing graph of C, and let

R be the collection of all subgraphs of Ξ. Note that there is a one-to-one correspondence

between the vertices of Ξ and the elements of H, therefore each Ω P R corresponds to a

subset A Ď H, by taking A “ Ωp0q.

Given two edges E,E 1 of C, write E „Ω E 1 if there is a path γ in Cp1q from E to E 1

such that every edge of γ (including E and E 1) is dual to some hyperplane in Ωp0q. Let

rEsΩ denote the equivalence class of E with respect to „Ω. Define CΩ to be the collection

of induced subcomplexes of C whose 1–skeleton is rEsΩ for some edge E.

Theorem 2.7.23 ([BHS17b, Corollary 8.9]). Let C be a special cube complex with finitely

many hyperplanes, and let X be its universal cover. Let Ξ be the crossing graph of C and

let R be the collection of all subgraphs of Ξ. The collection of all lifts of subcomplexes in
Ť

ΩPRCΩ forms a factor system for X.
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Denote this factor system by F. A proto-hierarchy structure S can then be constructed

for X as follows. See [BHS17b, Remark 13.2] for full details on how S forms an HHS

structure.

Define an equivalence relation || on F as follows. Given two subcomplexes F, F 1 P F,

write F ||F 1 if each hyperplane of X crosses F if and only if it crosses F 1. We say F and F 1

are parallel, and call the equivalence class rF s of F its parallelism class. We then define the

index set S for the proto-hierarchy structure by choosing exactly one element of F in each

parallelism class.

Given F P S, define C0pF q to be the graph whose vertices are the hyperplanes of F , and

where two vertices are connected by an edge if the carriers of the corresponding hyperplanes

intersect. We call C0pF q the contact graph of F . We then take CpF q to be the factored

contact graph, defined as follows.

Let F P F and define FF “ tF
1 X F | F 1 P Fu. For each Y P FF , we can then consider

C0pY q as a subgraph of C0pF q. For each parallelism class rY s, if Y P FF r tF u and Y is

either parallel to a combinatorial hyperplane or has diameter at least ξ, then cone off C0pY q

in C0pF q. That is, for each such rY s, add a vertex vY to C0pF q and add edges connecting vY

to every vertex of C0pY q Ď C0pF q. The resulting graph is the factored contact graph CpF q.

The proto-hierarchy structure is then given as follows.

(1) (Projections.) Given F P S, define the projection map πF : X Ñ 2CpF q as πF “

iF ˝ ρF ˝ gF , where gF : X Ñ F is the gate map onto the subcomplex F Ď X,

ρF : F Ñ 2C0pF q is defined by taking ρF pxq to be the maximal collection of hyperplanes

of F whose carriers all contain x, and iF : 2C0pF q Ñ 2CpF q is the inclusion map.

(2) (Nesting.) Given F, F 1 P S, we say F is nested in F 1 (written F Ď F 1) if there exists a

subcomplex K Ď F 1 such that F ||K. If F Ĺ F 1, then the set H of hyperplanes crossing

F is the same as the set of hyperplanes crossing K, and therefore H is a subset of the

70



set of hyperplanes crossing F 1. It follows that C0pF q Ď C0pF
1q. The upwards relative

projection is then defined to be ρFF 1 “ πF 1pF q “ iF 1pC0pF qq.

(3) (Orthogonality.) Given F, F 1 P S, we say F is orthogonal to F 1 (written FKF 1) if

there exist K||F and K 1||F 1 such that there is a cubical isometric embedding F ˆF 1 Ñ

X where K is the image of F ˆ tgF 1pKqu and K 1 is the image of tgF pK 1qu ˆ F 1.

(4) (Transversality.) If F, F 1 P S are not nested or orthogonal, then we say they are

transverse (written F&F 1). The lateral relative projection from F to F 1 is defined as

ρFF 1 “ πF 1pF q, and ρF
1

F is defined in the same way.

Theorem 2.7.24 (Special groups are HHGs; [BHS17b, Proposition B, Remark 13.2]). Let

X be a special cube complex with finitely many hyperplanes. Then its universal cover is a

hierarchically hyperbolic space, and π1pXq is a hierarchically hyperbolic group.

Corollary 2.7.25 (Graph braid groups are HHGs). Let Γ be a finite graph. Then BnpΓ, Sq

is a hierarchically hyperbolic group for all n ě 1 and for all S P UCnpΓq.

Proof. The case where Γ is connected follows from such graph braid groups being funda-

mental groups of special cube complexes with finitely many hyperplanes (Corollary 2.5.7),

which are HHGs by Theorem 2.7.24. If Γ has more than one connected component, then

we can express BnpΓ, Sq as a product of graph braid groups of connected components of Γ

by Lemma 2.5.2. Thus, BnpΓ, Sq is a product of hierarchically hyperbolic groups, whence it

follows that BnpΓ, Sq is itself a hierarchically hyperbolic group, by a combination theorem

of Behrstock, Hagen, and Sisto [BHS17b, Corollary 8.26].
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Chapter 3

Almost HHSs are HHSs

The main result of this section establishes that all almost HHS structures can be promoted

to HHS structures by adding dummy domains to serve as the containers.

Theorem 3.0.1 (Almost HHSs are HHSs). Let pX ,Sq be an almost HHS. There exists an

HHS structure T for X so that S Ď T, and if W P T r S then the associated hyperbolic

space for W is a single point.

If pX ,Sq is an almost HHS, then the only HHS axiom that is not satisfied is the container

axiom. The most obvious way to address this is to add an extra element to S every time

we need a container. That is, if V,W P S with V Ď W and there exists some Q Ď W with

Q K V , then we add a domain DV
W to serve as the container for V in W , i.e., every Q nested

into W and orthogonal to V will be nested into DV
W . However, this approach is perilous as

once a domain Q is nested into DV
W , we may now need a container for Q in DV

W ! To avoid

this, we add domains DV
W where V is a pairwise orthogonal set of domains nested into W ;

that is, DV
W contains all domains Q that are nested into W and orthogonal to all V P V .

This allows for all the needed containers to be added at once, avoiding an iterative process.

Remark 3.0.2. To prove Theorem 3.0.1, we shall require Lemma 2.7.5, Lemma 2.7.8, The-

orem 2.7.9, and Lemma 2.7.10. Each of these results was originally proved in the setting of
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hierarchically hyperbolic spaces, but as noted in Remark 2.7.20 they continue to hold in the

almost HHS setting.

Proof of Theorem 3.0.1. Let pX ,Sq be an almost HHS. Let V denote a non-empty set of

pairwise orthogonal elements of S and let W P S. We say the pair pW,Vq is a container

pair if the following are satisfied:

• V Ď W for all V P V ;

• there exists Q Ď W such that Q K V for all V P V .

Let D denote the set of all container pairs. We will denote a pair pW,Vq P D by DV
W .

Let T “ S Y D. If DV
W P D, then the associated hyperbolic space, CpDV

W q, will be a

single point.

Claim 3.0.3. X admits a proto-hierarchy structure with index set T.

Proof. Since pX ,Sq is an almost HHS, we can continue to use the spaces, projections, and

relations of S. Thus, it suffices to verify the axioms for elements of D and relations involving

elements of D.

Projections: For DV
W P D, the projection map is just the constant map to the single

point in CpDV
W q.

Nesting: Let Q P S and DV
W , D

R
T P D.

• Define Q Ď DV
W if Q Ď W in S and Q K V for all V P V .

• Define DV
W Ď Q if W Ď Q in S.

• Define DV
W Ď DR

T if W Ď T in S and for all R P R either R K W or there exists V P V

with R Ď V .

These definitions ensure Ď is still a partial order and maintain the Ď–maximal element

of S as the Ď–maximal element of T.
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Since the hyperbolic spaces associated to elements of D are points, define ρQ
DV
W
“ CpDV

W q

for every Q P T and DV
W P D with Q Ĺ DV

W . If DV
W P D and Q P S with DV

W Ĺ Q, then

V Ĺ Q in S for each V P V . Thus we define ρD
V
W

Q “
Ť

V PV ρ
V
Q. Lemma 2.7.5 ensures that

ρ
DV
W

Q has diameter at most 4E.

Orthogonality: Two elements DV
W , D

R
T P D are orthogonal if W K T in S. Let Q P S

and DV
W P D. Define Q K DV

W if, in S, either Q K W or Q Ď V for some V P V .

Transversality: An element of T is transverse to an element of D whenever it is not

nested or orthogonal. Since the hyperbolic spaces associated to elements of D are points, we

only need to define the relative projections from an element of D to an element of S. Let

DV
W P D and Q P S and suppose DV

W&Q. This implies W M Q and W Ď Q. We define ρD
V
W

Q

based on the S–relation between Q and the elements of V .

• If Q K V for all V P V , then Q Ď W as Q Ď W would imply Q Ď DV
W . Thus we must

have Q&W , so we define ρD
V
W

Q “ ρWQ .

• If V&Q or V Ĺ Q for some V P V , then ρVQ exists and we define ρD
V
W

Q to be the union

of all the ρVQ for V P V with V&Q or V Ĺ Q. Lemma 2.7.5 ensures ρD
V
W

Q has diameter

at most 4E in this case.

• If Q Ď V for some V , then Q K DV
W which contradicts Q&DV

W , so this case does not

occur.

We now prove that pX ,Tq is a hierarchically hyperbolic space. This will complete the

proof of Theorem 3.0.1. By abuse of notation, let E be the largest of the constants for the

proto-structure of T.

Hyperbolicity: For all elements of D the associated spaces are points and thus hyper-

bolic. For elements of S, the associated spaces are hyperbolic since S is an almost HHS

structure.

Finite complexity: First consider a nesting chain of the form DV1
W Ĺ DV2

W Ĺ . . . Ĺ DVn
W .
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Claim 3.0.4. The length of DV1
W Ĺ DV2

W Ĺ . . . Ĺ DVn
W is bounded by E2 ` E.

Proof. For each V P
Ťn
i“1 Vi, we have V Ď W and hence V M W . As DVi´1

W Ĺ DVi
W for each

i P t2, . . . , nu, every element of Vi must therefore be nested into an element of Vi´1. Denote

the elements of Vi by V i
1 , . . . V

i
ki
. Since each Vi is a pairwise orthogonal subset of S, we have

ki ď E for each i P t1, . . . , nu by the finite rank axiom of an almost HHS (Definition 2.7.19).

We define a V–nesting chain to be a maximal chain of the form V m
jm Ď V m´1

jm´1
Ď . . . Ď V 1

j1
for

some m P t1, . . . , nu and ji P t1, . . . , kiu, with i P t1, . . . ,mu. Since the elements of Vi are

pairwise orthogonal for each i P t1, . . . , nu, if V m
jm is the Ď–minimal element of a V–nesting

chain, then V m
jm is nested into exactly one element of Vi for each i ď m. This implies that

each V-nesting chain is determined by its Ď–minimal element. Further, the set of Ď–minimal

elements of V–nesting chains is pairwise orthogonal. By the finite rank axiom of an almost

HHS, this implies there exist at most E V–nesting chains.

In order for DVi
W ‰ D

Vi`1

W , either ki`1 ă ki or there exists ji P t1, . . . , kiu, ji`1 P

t1, . . . , ki`1u such that V i`1
ji`1

Ĺ V i
ji
. Thus, every step up the chain DV1

W Ĺ DV2
W Ĺ . . . Ĺ DVn

W

results in either a strict decrease in ki (the cardinality of Vi) to ki`1 (the cardinality of Vi`1)

or a strict decrease within one of the V–nesting chains. Note that ki may increase when we

encounter a strict decrease in one of the V–nesting chains, since multiple elements of Vi`1

may be nested into the same element of Vi. However, this may only happen at most E ´ k1

times, as there are at most E V–nesting chains. Hence, the length of DV1
W Ĺ DV2

W Ĺ . . . Ĺ DVn
W

is bounded by E plus the total number of times a strict decrease can occur across all of the

V–nesting chains.

Each V–nesting chain V m
jm Ď V m´1

jm´1
Ď . . . Ď V 1

j1
contains at most E distinct elements of

S by the finite complexity of S. Finite rank implies there are at most E different V–nesting

chains, thus the number of steps of the chain DV1
W Ĺ DV2

W Ĺ . . . Ĺ DVn
W where there is a

strict decrease within one of the V–nesting chains is at most E2. This bounds the length of

DV1
W Ĺ DV2

W Ĺ . . . Ĺ DVn
W by E2 ` E.
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We now consider a nesting chain of the form DV1
W1

Ĺ DV2
W2

Ĺ . . . Ĺ DVn
Wn

. In this case,

W1 Ď W2 Ď . . . Ď Wn, but not all of these nestings must be proper. Let 1 “ i1 ă i2 ă ¨ ¨ ¨ ă ik

be the minimal subset of t1, . . . , nu such that if ij ď i ă ij`1, then Wij “ Wi. Thus

Wi1 Ĺ Wi2 Ĺ . . . Ĺ Wik and k ď E. Claim 3.0.4 established that |ij ´ ij`1| ď E2 ` E, so

n ď kpE2`Eq ď E3`E2, that is, any Ĺ–chain of elements of D has length at most E3`E2.

Finally, since any Ĺ–chain of elements of T can be partitioned into a Ĺ–chain of elements

of D and a Ĺ–chain of elements of S, any Ĺ–chain in T has length at most E3 ` E2 ` E.

Containers: Let W,V P S with V Ĺ W and tQ P TW : Q K V u ‰ H, i.e., pW, tV uq is

a container pair. In this case, the container of V in W for T is DtV uW .

We now show containers exist for situations involving elements of D. We split this into

three subcases.

Case 1: DV
W P D and Q P S with DV

W Ď Q. Since pW,Vq is a container pair, there

exists P P S with P Ď W and P K V for all V P V . Suppose that DV
W requires a container

in Q, that is, there is an element of T that is orthogonal to DV
W and nested in Q. We verify

that pQ, tP uq is a container pair and DtP uQ is a container of DV
W in Q.

If T P S with T K DV
W and T Ď Q, then T K W or T Ď V for some V P V . In either

case, we have T K P , so pQ, tP uq is a container pair and T Ď D
tP u
Q . If DR

T P D with DR
T Ď Q

and DR
T K DV

W , then T Ď Q and T K W . Since P Ď W , this implies T K P and so pQ, tP uq

is again a container pair, and DR
T Ď D

tP u
Q .

Case 2: DV
W,DR

T P D where DV
W Ď DR

T. Since pW,Vq is a container pair, there exists

P P S so that P Ď W and P K V for all V P V . Since DV
W Ď DR

T , it follows that for all

R P R, either R K W or there exists V P V so that R Ď V . In both cases, R K P . Thus

P “ RYtP u is a pairwise orthogonal collection of elements of S. Suppose that DV
W requires

a container in DR
T , that is, there is an element of T that is orthogonal to DV

W and nested in

DR
T . We verify that pT,Pq is a container pair and DP

T Ĺ DR
T is a container for DV

W in DR
T .

If Q P S satisfies Q Ď DR
T and DV

W K Q, then Q Ď T and we have either Q K W or
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Q Ď V for some V P V . In both cases, Q K P . Further, we must have Q K R for each R P R

as Q Ď DR
T . Thus pT,Pq is a container pair and Q Ď DP

T . On the other hand, if DZ
Q P D

satisfies DZ
Q K DV

W and DZ
Q Ď DR

T , then Q K W , Q Ď T , and for each R P R either Q K R

or there exists Z P Z with R Ď Z. Since pQ,Zq is a container pair, there exists U P S such

that U Ď Q and UKZ for all Z P Z. Since Q K W , we also have U K P as U Ď Q and

P Ď W . For each R P R, either R K Q or there exists Z P Z with R Ď Z. In both cases,

R K U . Thus, U is orthogonal to all elements of P “ R Y tP u and moreover U Ď Q Ď T ,

so pT,Pq is a container pair. Furthermore, DZ
Q Ď DP

T “ D
RYtP u
T since DZ

Q Ď DR
T and PKQ.

We have therefore shown that DP
T is a container for DV

W in DR
T .

Case 3: DR
T P D and Q P S with Q Ď DR

T. This implies Q “ R Y tQu is a pairwise

orthogonal set of elements of S. Further, suppose that Q requires a container in DR
T , that

is, there is an element of T that is orthogonal to Q and nested in DR
T . We verify that pT,Qq

is a container pair and DQ
T is a container for Q in DR

T .

Suppose there exists V P S with V Ď DR
T and V K Q. Then V Ď T and V is orthogonal

to all the elements of RY tQu. Thus pT,Qq is a container pair, so DQ
T exists and V Ď DQ

T .

Now suppose there exists DV
W Ď DR

T such that Q K DV
W . Since pW,Vq is a container pair,

there exists U P S with U Ď W and U orthogonal to each element of V . As Q K DV
W , we

have Q K W or Q Ď V for some V P V . In both cases, Q K U . Therefore U is orthogonal to

every element of Q, and moreover U Ď W Ď T since DV
W Ď DR

T . Thus pT,Qq is a container

pair and U Ď DQ
T . Now, for each R P R, either R K W or R Ď V for some V P V . Since

Q “ R Y tQu and QKW , this implies DV
W Ď DQ

T . Thus, pT,Qq is a container pair and DQ
T

is a container for Q in DR
T .

Uniqueness, bounded geodesic image, large links: Since the only elements of T

whose associated spaces are not points are in S, these axioms for pX ,Tq follow from the fact

they hold in pX ,Sq.

Consistency: Since the only elements of T whose associated spaces are not points are
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in S, the first inequality in the consistency axiom for pX ,Sq implies the same inequality

for pX ,Tq. To verify the final clause of the consistency axiom, we need to check that if

Q,R, T P T such that Q Ĺ R with ρRT and ρQT both defined, then dT pρ
Q
T , ρ

R
T q is uniformly

bounded in terms of E. We can assume T P S as CpT q has diameter zero otherwise. We

can further assume at least one of Q and R is an element of D, as we have the consistency

axiom for elements of S.

Case 1: Q Ĺ R Ĺ T.

• Assume Q P S and R “ DV
W P D. Fix V P V . SinceDV

W “ R Ď T and ρD
V
W

T “
Ť

UPV ρ
U
T ,

we have ρVT Ď ρ
DV
W

T “ ρRT . Since V K Q, Lemma 2.7.5 says dT pρRT , ρ
Q
T q ď dT pρVT , ρ

Q
T q ď

2E.

• AssumeQ “ DV
W P D and R P S. Fix V P V . In this case, ρVT Ď ρQT sinceDV

W “ Q Ĺ T .

Since DV
W “ Q Ĺ R, we have V Ĺ W Ď R. Thus, the consistency axiom for S says

dT pρ
Q
T , ρ

R
T q ď dT pρVT , ρ

R
T q ď E.

• Assume Q “ DV
W P D and R “ DV 1

W 1 . Thus W Ď W 1 Ĺ T and consistency in

S implies dT pρWT , ρ
W 1

T q ď E. Fix V P V and V 1 P V 1. Consistency in S also im-

plies dT pρVT , ρ
W
T q ď E and dT pρV

1

T , ρ
W 1

T q ď E. Since ρVT Ď ρQT and ρV
1

T Ď ρRT , we

have dT pρ
Q
T , ρ

R
T q ď dT pρVT , ρ

V 1

T q ď dT pρVT , ρ
W
T q ` diampρWT q ` dT pρWT , ρ

W 1

T q ` diampρW
1

T q `

dT pρW
1

T , ρV
1

T q ď 5E.

Case 2: Q Ĺ R, R&T, and Q M T. In this case we have either Q&T or Q Ĺ T .

• Assume Q P S and R “ DV
W P D. Since DV

W “ R&T , we cannot have T Ď V for any

V P V (this would imply DV
W K T ). If V K T for all V P V , then W&T (as shown in

the proof of transversality in Claim 3.0.3) and ρRT “ ρ
DV
W

T “ ρWT . Since Q Ď R “ DV
W ,

we have Q Ď W and consistency in S implies dT pρ
Q
T , ρ

R
T q “ dT pρ

Q
T , ρ

W
T q ď E. If instead

there exists V P V so that T&V or V Ĺ T , then ρVT Ď ρ
DV
W

T “ ρRT . Since Q Ď R “ DV
W ,

we have Q K V and Lemma 2.7.5 gives dT pρ
Q
T , ρ

R
T q ď dT pρ

Q
T , ρ

V
T q ď 2E.
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• Assume Q “ DV
W P D and R P S. As before, T Ď V for all V P V . First assume

there exists V P V so that V&T or V Ĺ T . This occurs when either DV
W “ Q Ĺ T or

Q&T and not every element of V is orthogonal to T . In both cases, ρVT Ď ρ
DV
W

T “ ρQT

and consistency in S implies dT pρ
Q
T , ρ

R
T q ď dT pρVT , ρ

R
T q ď 2E because V Ď W Ĺ R.

Now assume T K V for all V P V . This can only occur when DV
W “ Q&T . In

this case, W&T and ρQT “ ρ
DV
W

T “ ρWT . Since W Ĺ R, consistency in S implies

dT pρRT , ρ
Q
T q ď dT pρRT , ρ

W
T q ď E.

• Assume Q “ DV
W P D and R “ DV 1

W 1 P D. As before, T Ď V for all V P V Y V 1.

If ρRT “ ρW
1

T , then we have the first case of transversality laid out in the proof of

Claim 3.0.3, that is, W 1&T and V 1 K T for all V 1 P V . Thus, if ρRT “ ρW
1

T , then the

result reduces to the previous bullet, replacing R with W 1. We can therefore assume

ρRT ‰ ρW
1

T , meaning we have the second case of transversality where there exists V 1 P V 1

so that V 1 is either transverse to or properly nested into T .

Suppose ρQT ‰ ρWT too. This implies there also exists V P V so that V is either

transverse to or properly nested into T . Furthermore, ρVT Ď ρQT and ρV 1T Ď ρRT . Now,

DV
W Ď DV 1

W 1 implies V 1 K W or V 1 is nested into an element of V . If V 1 K W , then

V K V 1 and Lemma 2.7.5 implies dT pρ
Q
T , ρ

R
T q ď dT pρVT , ρ

V 1

T q ď 2E. If V 1 is nested into

an element of V , then either V 1 Ď V or V 1 K V since V is a pairwise orthogonal subset

of S. By applying consistency in S when V 1 Ď V or Lemma 2.7.5 when V 1 K V , we

have dT pρ
Q
T , ρ

R
T q ď dT pρVT , ρ

V 1

T q ď 2E.

Now suppose ρQT “ ρWT . Then DV
W Ď DV 1

W 1 implies V 1 K W or V 1 is nested into W .

Applying Lemma 2.7.5 if V 1KW , or consistency in S if V 1 Ď W , we again obtain

dT pρ
Q
T , ρ

R
T q “ dT pρWT , ρ

R
T q ď dT pρWT , ρ

V 1

T q ď 2E.

Partial realisation: Let T1, . . . , Tn be pairwise orthogonal elements of T, and let

pi P CpTiq for each i P t1, . . . , nu. Without loss of generality, assume T1, . . . , Tk P S and

79



Tk`1, . . . , Tn P D where k P t0, . . . , nu. If k “ 0 (resp. k “ n), then each Ti P D (resp. each

Ti P S).

For i P tk ` 1, . . . , nu, let Ti “ DVi
Wi

and let qi be any point in ρ
D

Vi
Wi

Wi
Ď CpWiq. Since

T1, . . . , Tn are pairwise orthogonal, it follows that Wk`1, . . . ,Wn are pairwise orthogonal too,

and for each j P t1, . . . , ku, Tj is either nested into an element of some Vi or orthogonal

to all Wk`1, . . . ,Wn. Without loss of generality, assume that T1, . . . , Tl are nested into

elements of Vm`1 Y ¨ ¨ ¨ Y Vn and Tl`1, . . . , Tk,Wk`1, . . . ,Wn are pairwise orthogonal, where

0 ď n´m ď l ď k. If l “ 0, then n “ m and each Tj is orthogonal to every Wi. Otherwise,

for each j P t1, . . . , lu, Tj is nested in some Wi for i P tm ` 1, . . . , nu. In both cases,

T1, . . . , Tk,Wk`1, . . . ,Wm are pairwise orthogonal elements of S. We can therefore use the

partial realisation axiom in S on the points p1, . . . , pk, qk`1, . . . , qm to produce a point x P X

with the following properties:

(1) dTipx, piq ď E for i P t1, . . . , ku;

(2) dWi
px, qiq ď E for i P tk ` 1, . . . ,mu;

(3) for all i P t1, . . . , ku if Q&Ti or Ti Ĺ Q, then dQpx, ρTiQ q ď E;

(4) for all i P tk, . . . ,mu if Q&Wi or Wi Ĺ Q, then dQpx, ρWi
Q q ď E.

Now, for Q P S, define bQ P CpQq as follows. Let V “
Ťn
i“k`1 Vi and VQ “ tV P V :

V&Q or V Ĺ Qu. If VQ ‰ H, then define bQ to be any point in
Ť

V PVQ ρ
V
Q. Since V is a

collection of pairwise orthogonal elements of S, the diameter of
Ť

V PVQ ρ
V
Q is at most 2E

by Lemma 2.7.5. If either Q Ď V for some V P V or Q K V for all V P V then define

bQ “ πQpxq. Since V is a collection of pairwise orthogonal elements of S, these two cases

encompass all elements of S.

Claim 3.0.5. The tuple pbQqQPS is 3E–consistent.
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Proof. Let R,Z P S. Recall that if bZ “ πZpxq and bR “ πRpxq, then the 3E–consistency

inequalities for bR and bZ are satisfied by Lemma 2.7.8. Thus we can assume that there

exists V P V so that either V Ĺ Z or V&Z. Fix V P V so that bZ P ρVZ . We need to verify

the consistency inequalities when R&Z, R Ĺ Z, and Z Ĺ R.

Consistency when R&Z: Assume R&Z. If R K V , V Ď R, or R Ď V then ei-

ther Lemma 2.7.5 or consistency in S implies dZpρVZ , ρ
R
Zq ď 2E. Since bZ P ρVZ , we have

dZpbZ , ρRZq ď 3E. Thus, we can assume R&V so that VR is non-empty, that is bR P
Ť

UPVR ρ
U
R

and so bR is within 2E of ρVR. Now, if dZpbZ , ρRZq ą 3E, then dZpρVZ , ρ
R
Zq ą 2E. Thus ρ–

consistency (Lemma 2.7.10) implies dRpρVR, ρ
Z
Rq ď E. It follows that dRpbR, ρZRq ď 3E by the

triangle inequality.

Consistency when R Ĺ Z: Assume R Ĺ Z. As before, if R K V , V Ď R, or R Ď V

then dZpρVZ , ρ
R
Zq ď 2E and we have dZpbZ , ρRZq ď 3E. Thus, we can assume R&V so that

bR is within 2E of ρVR. Now, if dZpbZ , ρRZq ą 3E, then dZpρVZ , ρ
R
Zq ą 2E, and ρ–consistency

implies diampρVRYρ
Z
Rpρ

V
Z qq ď E. However, this implies diampbRYρ

Z
RpbZqq ď 3E since bZ P ρVZ

and dRpbR, ρVRq ď 2E.

Consistency when Z Ĺ R: Assume Z Ĺ R. If R is orthogonal to all elements of V ,

then R K V implies V K Z which contradicts the assumption that V Ĺ Z or V&Z. On the

other hand, if there exists V 1 P V so that R Ď V 1, then either V K R or R Ď V “ V 1. But

this implies either V K Z or Z Ĺ V , both of which give a contradiction if V&Z or V Ĺ Z.

There must therefore be an element of V that is either properly nested in or transverse to

R, and we can repeat the same argument as in the previous case, switching the roles of R

and Z.

Let y P X be the point produced by applying the realisation theorem (Theorem 2.7.9)

in S to the tuple pbQq. We claim y is a partial realisation point for p1, . . . , pn in T. Since

CpDVi
Wi
q is a single point, y satisfies the first requirement of the partial realisation axiom in T

for pk`1, . . . , pn. For i ď k, Ti is either nested into an element of Vm`1Y¨ ¨ ¨YVn or orthogonal
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to all Wk`1, . . . ,Wn. This implies Ti is either nested into an element of V or orthogonal to

all elements of V . In both cases bTi “ πTipxq, and we have that πTipyq is uniformly close to

πTipxq, which is in turn E–close to pi by item (1).

Now, let Q P S with Q&Ti or Ti Ĺ Q for some i P t1, . . . , nu. We verify dQpy, ρTiQ q is

uniformly bounded when i ď k and i ą k separately.

Assume i ď k, so that Ti P S. If i ď k and bQ “ πQpxq, then dQpy, ρTiQ q is bounded

by item (3). If i ď k and bQ ‰ πQpxq, then bQ P ρVQ for some V P V and Ti is either

orthogonal to or nested into V . If TiKV then dQpbQ, ρTiQ q ď 3E by Lemma 2.7.5. If Ti Ĺ V

then dQpbQ, ρTiQ q ď 2E by consistency. The result then follows from the triangle inequality

since πQpyq is uniformly close to bQ.

Now assume i ą k, so that Ti “ DVi
Wi
P D. If DVi

Wi
Ĺ Q, then ρVQ Ď ρ

D
Vi
Wi

Q for all V P Vi.

Since bQ is within 2E of any ρVQ for V P Vi, this bounds dQpy, ρ
D

Vi
Wi

Q q uniformly. On the other

hand, if DVi
Wi

&Q, then either Q K V for all V P Vi or there exists V P Vi so that V&Q or

V Ĺ Q. In the latter case, ρVQ Ď ρ
D

Vi
Wi

Q and we are finished since bQ is within 2E of ρVQ, giving

a uniform bound on the distance from πQpyq to ρ
D

Vi
Wi

Q . In the former case, we must have

Wi&Q and ρ
D

Vi
Wi

Q is equal to ρWi
Q . If bQ “ πQpxq than we are done by item (4). Otherwise,

there exists V 1 P V r Vi so that V 1&Q or V 1 Ĺ Q and bQ P ρV
1

Q . Since V 1 K Wi, it follows

that ρV 1Q is within 2E of ρWi
Q . Thus bQ, and hence πQpyq, is uniformly close to ρWi

Q “ ρ
D

Vi
Wi

Q .

This completes the proof of Theorem 3.0.1.

Remark 3.0.6. (Almost HHGs are HHGs) If G is a group and S is an almost HHS structure

for the Cayley graph of G, then we say S is an almost HHG structure for G if it satisfies

items (2) and (3) of the definition of an HHG. The above proof shows that if pG,Sq is an

almost HHG, then the structure T from Theorem 3.0.1 is an HHG structure for G.

We conclude this section with a noteworthy application of Theorem 3.0.1. In [ABD21],

Abbott, Behrstock, and Durham sought to show every hierarchically hyperbolic group admits

an HHG structure with the following property.
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Definition 3.0.7 (Unbounded products). We say an (almost) hierarchically hyperbolic

group pG,Sq has unbounded products if there exists B ě 0 so that one of the following

holds for each V P S.

(1) V is the unique Ď–maximal element of S.

(2) diampCpW qq ď B whenever W Ď V .

(3) There exists W P S so that V K W and diampCpW qq “ 8.

In [ABD21], it was originally shown every HHG admits an almost HHG structure with

unbounded products, and moreover you can verify that this structure satisfies the container

axiom if the original HHG satisfies an additional hypothesis called clean containers. With

Theorem 3.0.1, we were able to tie off this loose end in the theory of hierarchically hyperbolic

groups and show all HHGs admit a structure with unbounded products.

Corollary 3.0.8. If pG,Sq is a hierarchically hyperbolic group, then there exists an HHG

structure T for G with unbounded products.

Proof. In the proofs of [ABD21, Theorem 3.7, Corollary 3.8], it is shown that every HHG

admits an almost HHG structure with unbounded products. Thus, G admits an almost HHG

structure T0 with unbounded products. Further, from the proof of [ABD21, Theorem 3.7],

T0 has the property that for every non–Ď–maximal domain V P T0, there exist W,Q P T0

so that W Ď V , Q K V and diampCpW qq “ diampCpQqq “ 8. Let T be the HHG structure

obtained from T0 using Theorem 3.0.1. We need only verify unbounded products for elements

of T r T0. Using the notation of Theorem 3.0.1, let DV
W P T r T0. By construction of T0,

there exists R Ď DV
W with diampCpRqq “ 8, so item (2) does not hold, and moreover DV

W is

not the Ď–maximal element of T. However, V KDV
W for all V P V , and by construction of T0,

there exists T P T0 so that T Ď V and diampCpT qq “ 8. Since TKDV
W , item (3) holds.
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Chapter 4

Hierarchical hyperbolicity of graph

products

In this chapter we show that all graph products of finitely generated groups can be endowed

with a relative HHG structure (Theorem 4.2.22), generalising results of Behrstock–Hagen–

Sisto for right-angled Artin groups [BHS17b]. We build the proto-hierarchy structure for

a graph product in Section 4.1 and spend Section 4.2 verifying this structure satisfies the

axioms of a relative HHS and respects the group structure. We also show that any graph

product has a (non-relative) HHS structure with respect to the syllable metric (Theorem

4.2.25), answering a question of Behrstock–Hagen–Sisto. Furthermore, in the particular case

where all the vertex groups are themselves HHGs, the graph product can be endowed with a

(non-relative) HHG structure with respect to the word metric (Theorem 4.3.1). This answers

a second question of Behrstock–Hagen–Sisto.

In Section 4.3, we give some applications of our theorems. We give a new proof of a

theorem of Meier, classifying when a graph product of hyperbolic groups is itself hyperbolic

(Theorem 4.3.6). We also answer two questions of Genevois regarding a quasi-isometry

invariant called the electrification of a graph product of finite groups (Theorems 4.3.10 and

4.3.12).
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4.1 The proto-hierarchy structure on a graph product

For this sectionGΓ will be a graph product of finitely generated groups. For each vertex group

Gv, let Sv be a finite generating set for Gv, then define S to be
Ť

vPV pΓq Sv. Throughout this

section, d will denote the word metric on GΓ with respect to S. We now begin to explicitly

construct the HHS structure on GΓ. We first define the index set, associated spaces, and

projection maps in Section 4.1.1 and then define the relations and relative projections in

Section 4.1.2.

4.1.1 The index set, associated spaces, and projections.

The index set for our relative HHS structure onGΓ is the set of parallelism classes of graphical

subgroups. This mirrors the case of right-angled Artin groups studied in [BHS17b].

Definition 4.1.1 (Parallelism and the index set for a graph product). Let GΓ be a graph

product. For an induced subgraph Λ Ď Γ, we shall use gΛ to denote the coset gxΛy for ease

of notation. We say gΛ and hΛ are parallel if g´1h P xstpΛqy and write gΛ ‖ hΛ. Let rgΛs

denote the equivalence class of gΛ under the parallelism relation ‖. Define the index set

SΓ “ trgΛs : g P GΓ, Λ Ď Γu.

The geometric intuition for the definition of parallelism comes from the fact that if two

cosets gxΛy and hxΛy satisfy g´1h P xstpΛqy, then they are each crossed by precisely the same

set of hyperplanes of SpΓq. Recall that these hyperplanes, introduced in Definition 2.6.17,

are generalisations of those in cube complexes.

Proposition 4.1.2 (Parallel cosets have the same hyperplanes). Let Λ Ď Γ and g, h P GΓ.

If gxΛy ‖ hxΛy, then every hyperplane of SpΓq crossing gxΛy must also cross hxΛy.

Proof. Since gxΛy ‖ hxΛy, g´1h P xstpΛqy and there exists λ P xΛy and l P xlkpΛqy such that

g´1h “ λl. Since λ and l commute, g´1hxΛy “ lxΛy.
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Let H be a hyperplane in SpΓq crossing gxΛy. In particular, H separates two adjacent

points ga and gb in gxΛy. Translating by g´1, we have that g´1H separates a and b in xΛy.

Let s1 . . . sn be a reduced syllable expression for l. Thus, there is a geodesic from a to la and

a geodesic from b to lb each labelled by s1 . . . sn where each si P xlkpΛqy. Since b´1a labels

an edge of xΛy, b´1a and si span a square for each i P t1, . . . , nu. Thus we have a strip of

squares joining the edge between a and b to the edge between la and lb with the hyperplane

g´1H running through the middle. Hence g´1H crosses lxΛy “ g´1hxΛy and by translating

by g, H crosses hxΛy.

The hierarchy structure on a graph product on n vertices can be thought of as being built

up in n levels, with level k consisting of the subgraphs with k vertices. Whenever we build

up to the next level in the hierarchy, we need to record precisely the geometry we have just

added; any less will violate the uniqueness axiom, while any more may violate hyperbolicity.

When defining our spaces CpgΛq, we therefore do not want to record any distance travelled

in strict subgraphs of Λ. This leads us to the subgraph metric.

Definition 4.1.3 (Subgraph metric on a graph product). Let GΓ be a graph product. Define

CpΓq to be the graph whose vertices are elements of GΓ and where g, h P GΓ are joined by an

edge if there exists a proper subgraph Λ Ĺ Γ such that g´1h P xΛy, or if g´1h is an element

of the generating set S defined at the beginning of the section. We denote the distance in

CpΓq by dΓp¨, ¨q and say dΓpg, hq is the subgraph distance between g and h. When Γ is a

single vertex v, CpΓq “ Cpvq is the Cayley graph of the vertex group Gv with respect to the

finite generating set S. Otherwise, dΓpe, gq is equal to the smallest n such that g “ λ1 . . . λn

with supppλiq a proper subgraph of Γ for each i P t1, . . . , nu.

If g “ λ1 . . . λn where supppλiq is a proper subgraph of Γ for each i P t1, . . . , nu, then we

call λ1 . . . λn a subgraph expression for g. If n “ dΓpe, gq, then λ1 . . . λn is a reduced subgraph

expression for g. Note that when Γ is a single vertex, there are no subgraph expressions.

Remark 4.1.4. When Γ has at least 2 vertices, SpΓq is obtained from Cay(GΓ, S) by adding
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extra edges, where S is the generating set defined at the beginning of the section. Likewise

CpΓq is then obtained from SpΓq by adding even more edges. It therefore follows that

dΓ ď dsyl ď d, where d is the word metric on GΓ induced by S.

In a reduced subgraph expression g “ λ1 . . . λn we may assume suffixΛi`1
pλ1 . . . λiq “ e

for each i P t1, . . . , n ´ 1u by removing any non-trivial suffix from the end of λ1 . . . λi and

attaching it to the beginning of λi`1. By repeating this procedure for each i in ascending

order and then writing reduced syllable expressions for each λi, we then obtain a reduced

syllable expression for g.

Lemma 4.1.5. If Γ contains at least 2 vertices, then for each g P GΓ, there exist λ1, . . . , λn P

GΓ with supppλiq “ Λi Ĺ Γ such that the following hold.

(1) λ1 . . . λn is a reduced subgraph expression for g.

(2) For each i P t1, . . . , n´ 1u, suffixΛi`1
pλ1 . . . λiq “ e.

(3) |g|syl “ |λ1 . . . λn|syl “
řn
j“1 |λj|syl.

In particular, for each x, y P GΓ, there exists an SpΓq–geodesic γ connecting x and y such

that if λ1 . . . λn is the above reduced subgraph expression for x´1y, then the element xλ1 . . . λi

is a vertex of γ for each i P t1, . . . , nu.

Proof. We begin by noting how the final conclusion of the lemma follows from the main

conclusion. Let λ1 . . . λn be a reduced subgraph expression for x´1y that satisfies (3). For

each i P t1, . . . , nu, let si1 . . . simi be a reduced syllable expression for λi. Since |x´1y|syl “

|λ1 . . . λn|syl “
řn
j“1 |λj|syl, it follows that ps1

1 . . . s
1
m1
q . . . psn1 . . . s

n
mnq is a reduced syllable

expression for x´1y. Hence, there exists an SpΓq–geodesic η from e to x´1y whose edges

are labelled by ps1
1 . . . s

1
m1
q . . . psn1 . . . s

n
mnq, and this implies the element λ1 . . . λi appears as a

vertex of η for each i P t1, . . . , nu. Translating by x gives γ “ xη as the desired geodesic.
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We now prove we can find a reduced subgraph expression satisfying (2) and (3) for any

element of GΓ. Our proof proceeds by induction on n “ dΓpe, gq. If n “ 1, then supppgq is a

proper subgraph of Γ and the conclusion is trivially true.

Assume the lemma holds for all h P GΓ with dΓpe, hq ď n ´ 1 and let g P GΓ with

dΓpe, gq “ n. Let ω1 . . . ωn be a reduced subgraph expression for g. Let Ωi “ supppωiq for

each i P t1, . . . , nu. By the induction hypothesis, we can assume g0 “ ω1 . . . ωn´1 satisfies the

conclusion of the lemma. Hence, |ω1 . . . ωn´1|syl “
řn´1
j“1 |ωj|syl and suffixΩi`1

pω1 . . . ωiq “ e

for i P t1, . . . , n´ 2u.

Let σ “ suffixΩnpω1 . . . ωn´1q. For each i P t1, . . . , n ´ 1u, let si1 . . . simi be a reduced

syllable expression for ωi. Now, ps1
1 . . . s

1
m1
q . . . psn1 . . . s

n´1
mn´1

q is a reduced syllable expression

for ω1 . . . ωn´1 as |ω1 . . . ωn´1|syl “
řn´1
j“1 |ωj|syl. Thus, each syllable of σ is a syllable of one

of ω1, . . . , ωn´1. For each i P t1, . . . , n ´ 1u, let j1 ă ¨ ¨ ¨ ă ji be the elements of t1, . . . ,miu

such that sij1 , . . . , s
i
ji
are the syllables of ωi that are not syllables of σ. For i P t1, . . . , n´ 1u,

let ω1i “ sij1 . . . s
i
ji
. Thus, we have ω1 . . . ωn´1 “ ω11 . . . ω

1
n´1σ where suffixΩnpω

1
1 . . . ω

1
n´1q “ e.

Let ω1n “ σωn. Then ω11 . . . ω1n´1ω
1
n is a reduced subgraph expression for g with supppω1nq “

Ωn and suffixΩnpω
1
1 . . . ω

1
n´1q “ e. Let g1 “ ω11 . . . ω

1
n´1. Since ω11 . . . ω1n is a reduced subgraph

expression for g, then ω11 . . . ω1n´1 is a reduced subgraph expression for g1. Hence, dΓpe, g
1q “

n´1 and the induction hypothesis says there exists a reduced subgraph expression λ1 . . . λn´1

for g1 such that suffixsupppλi`1qpλ1 . . . λiq “ e for i P t1, . . . , n ´ 2u and |λ1 . . . λn´1|syl “

řn´1
j“1 |λj|syl. Further, suffixΩnpλ1 . . . λn´1q “ e as λ1 . . . λn´1 “ g1 “ ω11 . . . ω

1
n´1.

Now let λn “ ω1n and Λi “ supppλiq for each i P t1, . . . , nu. We verify that λ1, . . . , λn

satisfies the conclusion of the lemma for g.

(1) λ1 . . . λn is a reduced subgraph expression for g as each Λi “ supppλiq is a proper

subgraph of Γ and dΓpe, gq “ n.

(2) For each i P t1, . . . , n´ 1u, the above shows suffixΛi`1
pλ1 . . . λiq “ e.

(3) We prove that writing each λi in a reduced syllable form produces a reduced syllable form
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for the product λ1 . . . λn. For each i P t1, . . . , nu, let ti1 . . . tiki be a reduced syllable ex-

pression for λi. Since |λ1 . . . λn´1|syl “
řn´1
j“1 |λj|syl, we know pt

1
1 . . . t

1
k1
q . . . ptn´1

1 . . . tn´1
kn´1

q

is a reduced syllable expression for λ1 . . . λn´1. Thus, if pt11 . . . t1k1
q . . . ptn1 . . . t

n
kn
q is not

a reduced syllable expression for λ1 . . . λn, then Theorem 2.6.6 implies there must exist

syllables tij of λ1 . . . λn´1 and tn` of λn such that suppptijq “ suppptn` q and tij can be moved

to be adjacent to tn` using a number of commutation relations. However, this implies tij is

a suffix for λ1 . . . λn´1 with support in Λn. This is impossible as suffixΛnpλ1 . . . λn´1q “ e.

Therefore, pt11 . . . t1k1
q . . . ptn1 . . . t

n
kn
qmust be a reduced syllable expression for λ1 . . . λn and

hence |λ1 . . . λn|syl “ |λ1|syl ` ¨ ¨ ¨ ` |λn|syl as desired.

We can now define the geodesic spaces associated to elements of the index set. In the

next section, we will show that they are hyperbolic.

Definition 4.1.6. Let GΓ be a graph product. For each g P GΓ and Λ Ď Γ, let CpgΛq denote

the graph whose vertices are elements of the coset gxΛy and where gx and gy are joined by

an edge if x and y are joined by an edge in CpΛq. The metric on CpgΛq is denoted dgΛp¨, ¨q.

Remark 4.1.7. If Λ Ď Γ is a join Λ “ Λ1 ‹ Λ2, then every element λ P xΛy can be written

as λ “ λ1λ2 where λ1 P xΛ1y and λ2 P xΛ2y. Since Λ1 and Λ2 are proper subgraphs of Λ, this

implies CpΛq, and therefore CpgΛq, has diameter at most 2 whenever Λ splits as a join.

We now wish to use our gate map from Proposition 2.6.22 to define projections for our

hierarchy structure. SinceSΓ is the set of parallelism classes of cosets of graphical subgroups,

we must verify that the gate map is well-behaved under parallelism.

Lemma 4.1.8 (Gates to parallelism classes are well defined). If gΛ ‖ hΛ, then for all x P GΓ,

ghΛpxq “ ghΛ ˝ ggΛpxq. In particular, if gΛ ‖ hΛ, then ghΛ|gxΛy : gxΛy Ñ hxΛy agrees with the

isometry of SpΓq induced by the element hpg´1, where p “ prefixΛph
´1gq.

Proof. Suppose that ghΛpxq ‰ ghΛpggΛpxqq. There must then exist a hyperplaneH separating

ghΛpxq and ghΛpggΛpxqq in SpΓq. By (4) and (5) of Proposition 2.6.22, H separates x and
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ggΛpxq and thus cannot cross gxΛy. However, H crosses hxΛy, and so must cross gxΛy by

Proposition 4.1.2. As this is a contradiction, we must have that ghΛpxq “ ghΛpggΛpxqq.

Note, if gλ P gxΛy, then equivariance (Proposition 2.6.22(2)) plus the prefix description

of the gate map (Lemma 2.6.24) imply

ghΛpgλq “ h ¨ gΛph
´1gλq “ h ¨ prefixΛph

´1gλq.

Since h´1g P xstpΛqy, we can write h´1g “ pl, where p P xΛy and l P xlkpΛqy. Therefore

ghΛpgλq “ h ¨ prefixΛpplλq “ hpλ, that is, ghΛ|gxΛy agrees with the isometry induced by

hpg´1.

Since Cay(GΓ, S), SpΓq and CpΓq differ only in that the latter two have extra edges, we

can easily promote our gate map to a projection map.

Definition 4.1.9. For all Λ Ď Γ and g P GΓ, define πgΛ : GΓ Ñ CpgΛq by igΛ ˝ ggΛ where

igΛ is the inclusion map from gxΛy into CpgΛq.

Remark 4.1.10. Combining the prefix description of the gate map (Lemma 2.6.24) with

equivariance (Proposition 2.6.22.(2)), we have that ggΛpxq “ g ¨ prefixΛpg
´1xq for all x P

GΓ. Since the only difference between πgΛ and ggΛ is the metric on the image, this means

πgΛpxq “ g ¨ prefixΛpg
´1xq as well.

Note that any coset of xΛy can be expressed in the form gxΛy where suffixΛpgq “ e (and

thus prefixΛpg
´1q “ e). Indeed, let hxΛy be a coset of xΛy, and suppose suffixΛphq “ λ. Then

we can write h “ gλ, where suffixΛpgq “ e. It therefore follows that hxΛy “ gλxΛy “ gxΛy.

The next proposition shows that choosing the representative of gxΛy in this way ensures that

prefixΛpg
´1xq contains only syllables of x. This is particularly helpful when considering the

prefix description of πgΛpxq.
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Proposition 4.1.11. Let Λ Ď Γ and let g P GΓ. Then for all x, y P GΓ, every syllable of

pggΛpxqq
´1 ¨ ggΛpyq is a syllable of x´1y. In particular, if g is the representative of gxΛy with

suffixΛpgq “ e and h P GΓ, then every syllable of prefixΛpg
´1hq “ gΛpg

´1hq is a syllable of h.

Proof. Let x, y P GΓ, then let px “ ggΛpxq and py “ ggΛpyq. Let η be an SpΓq–geodesic

connecting px and py and let γ be an SpΓq–geodesic connecting x and y. Let s1, . . . , sn be

the elements of the vertex groups of GΓ that label the edges of η. This means s1, . . . , sn are

the syllables of p´1
x py. For each i P t1, . . . , nu, let Hi be the hyperplane dual to the edge of

η that is labelled by si and let vi be the vertex of Γ such that si P Gvi .

By Proposition 2.6.20(4) and Proposition 2.6.22(5), since each Hi separates ggΛpxq and

ggΛpyq, each Hi must also cross γ. For i P t1, . . . , nu, let Ei be the edge of γ dual to Hi. Note,

every edge dual to Hi is labelled by an element of the vertex group Gvi , but not necessarily

by the same element of Gvi .

If Ei is not labelled by si P Gvi , then the hyperplane Hi must encounter a triangle

of SpΓq between η and γ. This creates a branch of the hyperplane Hi that cannot cross

either η or γ by Proposition 2.6.20(4). Thus, this branch must cross either an SpΓq–geodesic

connecting x and px or an SpΓq–geodesic connecting y and py; see Figure 4.1. Without

x y

px py

gxΛy

X

γ

η

Hi

Figure 4.1: If the hyperplane Hi encounters a triangle of SpΓq between η and γ, then a
branch of Hi must cross an SpΓq–geodesic from x to px (shown) or from y to py.

loss of generality, assume Hi crosses an SpΓq–geodesic connecting x and px “ ggΛpxq. This

means Hi separates x from ggΛpxq, and thus Hi must separate x from all of gxΛy (Proposition
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2.6.20(4)). However, this is impossible as Hi crosses gxΛy. Therefore Hi cannot encounter

a triangle between η and γ, and Ei must therefore be labelled by the element si. Since the

elements labelling the edges of γ are the syllables of x´1y, this implies every syllable of p´1
x py

is also a syllable of x´1y.

For the final clause of the proposition, note that suffixΛpgq “ e implies gΛpg
´1q “

prefixΛpg
´1q “ e. Thus, we can apply the above with x “ g´1 and y “ g´1h to conclude that

every syllable of pgΛpg
´1qq´1gΛpg

´1hq “ gΛpg
´1hq is also a syllable of pg´1q´1g´1h “ h.

Given h, k P GΓ, we shall employ a common abuse of notation by using dgΛph, kq to

denote dgΛpπgΛphq, πgΛpkqq. We can now prove our first HHS axiom.

Lemma 4.1.12 (Projections). For each g P GΓ and Λ Ď Γ, the projection πgΛ is p1, 0q–

coarsely Lipschitz.

Proof. We want to show that dgΛpx, yq ď dpx, yq for all x, y P GΓ. First assume Λ consists

of a single vertex v. Let px and py be ggΛpxq “ πgΛpxq and ggΛpyq “ πgΛpyq respectively.

Since Λ is the single vertex v, CpΛq is the Cayley graph of Gv with respect to our fixed finite

generating set, and CpgΛq is a coset of CpΛq. Thus, it suffices to prove |p´1
x py| is bounded

above by |x´1y|, where | ¨ | is the word length on GΓ with respect to the generating set S

defined at the beginning of the section.

Let s “ p´1
x py P Gv. By Proposition 4.1.11, s must be a syllable of x´1y, that is, s

appears in a reduced syllable expression for x´1y. Recall, if s1 . . . sn is a reduced syllable

expression for x´1y, then |x´1y| “
řn
i“1 |si| (Corollary 2.6.7). Thus |x´1y| ě |s| “ |p´1

x py|.

Now assume Λ contains at least 2 vertices. By Proposition 2.6.22(1), we have

dsylpggΛpxq, ggΛpyqq ď dsylpx, yq ď dpx, yq.

Furthermore, CpgΛq is obtained from SpgΛq by adding edges as Λ contains at least two
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vertices. Thus we have

dgΛpx, yq ď dsylpggΛpxq, ggΛpyqq ď dsylpx, yq ď dpx, yq.

Given an SpΓq–geodesic γ, there is a natural order on its vertices which arises from

orienting γ. The distances between the vertices of γ under the projection πgΛ then satisfy

the following monotonicity property with respect to this order.

Lemma 4.1.13 (Subgraph distance along SpΓq–geodesics). Let γ be an SpΓq–geodesic con-

necting two elements x, y P GΓ. For each vertex q of γ, each element g P GΓ, and each

subgraph Λ Ď Γ, we have

dgΛpx, qq ď dgΛpx, yq and dgΛpq, yq ď dgΛpx, yq.

Proof. Fix g P GΓ and a subgraph Λ Ď Γ. Let px “ ggΛpxq, py “ ggΛpyq, and pq “ ggΛpqq.

First suppose Λ consists of a single vertex of Γ. Then the SpΓq–diameter of gxΛy is 1 and

there exists a single hyperplane H so that every edge of gxΛy is dual to H. If pq ‰ px and

pq ‰ py, then H must separate pq from both px and py. Therefore, H must cross γ between

x and q and again between q and y by Proposition 2.6.22(5). However, this is impossible

as H cannot cross γ twice (Proposition 2.6.20(4)). Thus we must have either pq “ px or

pq “ py. The conclusion of the lemma then automatically holds as πgΛpqq “ πgΛpxq or

πgΛpqq “ πgΛpyq.

Now assume Λ has at least two vertices and pq ‰ px and pq ‰ py. Let λ1 . . . λm be a

reduced subgraph expression for p´1
x py of the form provided by Lemma 4.1.5, so that there

exists an SpΓq–geodesic η connecting px and py whose vertices include pxλ1 . . . λi for each

i P t1, . . . ,mu.

Let α and β be SpΓq–geodesics connecting px to pq and pq to py respectively. Any

hyperplane that crosses α must also cross γ and separate x and q by Proposition 2.6.22(5).

93



Similarly, any hyperplane that crosses β must also cross γ and separate y and q. Thus,

a hyperplane that crosses both α and β would cross the SpΓq–geodesic γ twice. Since no

hyperplane of SpΓq can cross the same geodesic twice (Proposition 2.6.20(4)), it follows that

any hyperplane that crosses α (resp. β) cannot cross β (resp. α). By Remark 2.6.21, any

hyperplane that crosses either α or β must therefore cross η as α Y β Y η forms a loop in

SpΓq.

We now prove dgΛpx, qq ď dgΛpx, yq. The proof for dgΛpq, yq ď dgΛpx, yq is nearly identical

with β replacing α. Let E1, . . . , Ek be the edges of α and let Hj be the hyperplane that

crosses Ej for j P t1, . . . , ku. We say that two hyperplanes Hj and H` cross between α and

η if there exists a vertex a of α such that for each vertex b of η, either Hj or H` separates a

from b; see Figure 4.2.

Hk
Hk´1Hk´2

px

pq

py

a

α β

η

Figure 4.2: The hyperplanes Hk´2 and Hk´1 cross between α and η because the vertex a is
separated from every vertex of η by either Hk´2 or Hk´1. Even though Hk´2 and Hk cross,
they do not cross between α and η.

Claim 4.1.14. There exists an SpΓq–geodesic α1 that connects px and pq such that no two

of H1, . . . , Hk cross between α1 and η.

Proof. Let α1 “ α and let Ki be the number of times two of H1, . . . , Hk cross between αi

and η. Note, K1 ď
kpk´1q

2
. If K1 “ 0 we are done. Otherwise, there exists j P t1, . . . , ku

such that Hj is the first hyperplane where Hj´1 and Hj cross between α1 and η. Since Hj´1

and Hj cross, Proposition 2.6.20(5) tells us the edges Ej´1 and Ej are labelled by elements

of adjacent vertex groups. By Proposition 2.6.14, Ej´1 and Ej are two sides of a square S
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of SpΓq inside which Hj´1 and Hj cross. Let α2 be the SpΓq–geodesic obtained from α1 by

replacing the edges Ej´1 and Ej with the other two sides of the square S; see Figure 4.3.

HjHj´1

px

pq

py

Figure 4.3: The edges Ej´1 and Ej can be replaced with the other two edges of the square
S to obtain a new SpΓq–geodesic with K2 “ K1 ´ 1.

Since Hj´1 and Hj crossed between α1 and η, we now have K2 “ K1´1, that is, that the

number of times two of H1, . . . , Hk cross between α2 and η is one less than the number of

times two of H1, . . . , Hk crossed between α1 and η. Reindex H1, . . . , Hk such that Hj crosses

the jth edge of α2.

If K2 “ 0, we are done, with α1 “ α2. Otherwise, can repeat this argument at most kpk´1q
2

times to construct a sequence of geodesics α1, α2, . . . , αr where Ki`1 “ Ki ´ 1 and Kr “ 0.

Then, α1 “ αr.

Let α1 be as in Claim 4.1.14 and reindex H1, . . . , Hk so that Hj crosses the jth edge of α1

for each j P t1, . . . , ku. Since Hj crosses η for each j P t1, . . . , ku, the labels for the edges of

α1 are a subset of the labels of η. Further, since no two of H1, . . . , Hk cross between α1 and η,

the order in which the labels of edges appear along α1 is the same as the order in which they

appear along η. Since the vertices of η include pxλ1 . . . λi for each i P t1, . . . ,mu, this implies

that we can write p´1
x pq “ λ11 . . . λ

1
m, where supppλ1iq Ď supppλiq for each i P t1, . . . ,mu.

It therefore follows that the CpgΛq–distance between px and pq is bounded above by the

CpgΛq–distance between px and py, and so we have dgΛpx, qq ď dgΛpx, yq.
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4.1.2 The relations

Here we define the nesting, orthogonality, and transversality relations in the proto-hierarchy

structure, and prove they have the desired properties. We tackle the nesting relation first.

Definition 4.1.15 (Nesting). Let GΓ be a graph product and let SΓ be the index set of

parallelism classes of cosets of graphical subgroups described in Definition 4.1.1. We say

rgΛs Ď rhΩs if Λ Ď Ω and there exists k P GΓ such that rkΛs “ rgΛs and rkΩs “ rhΩs.

Lemma 4.1.16. The relation Ď is a partial order.

Proof. The only property that requires checking is transitivity, that is, if rg1Λ1s Ď rg2Λ2s

and rg2Λ2s Ď rg3Λ3s, then rg1Λ1s Ď rg3Λ3s.

Since Ď is transitive, we have Λ1 Ď Λ3. Furthermore, there exist a, b P GΓ such that

rg1Λ1s “ raΛ1s, raΛ2s “ rg2Λ2s “ rbΛ3s, rg3Λ3s “ rbΛ3s, that is, g´1
1 a P xstpΛ1qy, g´1

2 a, g´1
2 b P

xstpΛ2qy, g´1
3 b P xstpΛ3qy. Thus g´1

1 a “ l1λ1, g´1
2 a “ l2λ2, g´1

2 b “ l12λ
1
2, g

´1
3 b “ l3λ3 where

λi, λ
1
i P xΛiy and li, l1i P xlkpΛiqy for each i. Let c “ bpλ12q

´1λ2. Then g´1
3 c “ g´1

3 bpλ12q
´1λ2 P

xstpΛ3qy since Λ2 Ď Λ3. Moreover, since lkpΛ2q Ď lkpΛ1q,

g´1
1 c “ g´1

1 aa´1g2g
´1
2 bb´1c

“ l1λ1λ
´1
2 l´1

2 l12λ
1
2pλ

1
2q
´1λ2

“ l1l
´1
2 l12λ1 P xstpΛ1qy.

Thus rg1Λ1s “ rcΛ1s and rg3Λ3s “ rcΛ3s, verifying that rg1Λ1s Ď rg3Λ3s.

Definition 4.1.17 (Upwards relative projection). If rgΛs Ĺ rhΩs, for any choice of repre-

sentatives gΛ P rgΛs and hΩ P rhΩs, define ρgΛhΩ Ď CphΩq to be

ρgΛhΩ “
ď

kΛ‖gΛ

πhΩ

`

kxΛy
˘

“ πhΩpgxstpΛqyq.
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The equality between
Ť

kΛ‖hΛ πhΩ

`

kxΛy
˘

and πhΩ pgxstpΛqyq is a consequence of the definition

that kΛ ‖ gΛ if and only if g´1k P xstpΛqy. Indeed, gxstpΛqy “ gg´1kxstpΛqy “ kxstpΛqy Ě

kxΛy for all kΛ ‖ gΛ. Conversely, each element of gxstpΛqy can be written as glλ where

l P xlkpΛqy and λ P xΛy, so that glλ P glxΛy where g´1gl “ l P xstpΛqy and hence gΛ ‖ glΛ.

Lemma 4.1.18 (Upwards relative projections have bounded diameter). If rgΛs Ĺ rhΩs,

then for any choice of representatives gΛ P rgΛs and hΩ P rhΩs, we have diam
´

ρgΛhΩ

¯

ď 2.

Proof. Let gΛ and hΩ be fixed representatives of rgΛs and rhΩs respectively. Suppose first

that Ω splits as a join. Then diampCphΩqq “ 2 by Remark 4.1.7, and hence diam
´

ρgΛhΩ

¯

ď 2.

For the remainder of the proof we will therefore assume that Ω does not split as a join. Note

that this implies that stpΛq X Ω Ĺ Ω. Indeed, suppose stpΛq X Ω “ Ω. Then Ω Ď stpΛq, so

either Ω Ď Λ, Ω Ď lkpΛq, or Ω splits as a join. The first two cases are impossible as Λ Ĺ Ω,

and the last case is ruled out by assumption.

Let a P GΓ be such that raΛs “ rgΛs and raΩs “ rhΩs. Since raΛs “ rgΛs, we have g´1a P

xstpΛqy, so gxstpΛqy “ gg´1axstpΛqy “ axstpΛqy. Thus ρgΛhΩ “ πhΩpgxstpΛqyq “ πhΩpaxstpΛqyq.

Note that any element of axstpΛqy can be expressed in the form aλl where λ P xΛy and

l P xlkpΛqy. Using equivariance (Proposition 2.6.22(2)) and the prefix description of the gate

map (Lemma 2.6.24), we have

gaΩpaλlq “ a ¨ gΩpa
´1aλlq “ a ¨ prefixΩpλlq “ aλ ¨ prefixΩplq.

This implies gaΩpaλlq “ aλl0, where l0 “ prefixΩplq P xlkpΛq X Ωy and so supppλl0q Ď

Λ Y plkpΛq X Ωq “ stpΛq X Ω Ĺ Ω. Moreover, by Lemma 4.1.8, ghΩpaλlq “ ghΩpgaΩpaλlqq “

ghΩpaλl0q.

Since aΩ ‖ hΩ, the gate map from axΩy to hxΩy agrees with the isometry of SpΓq

induced by the element hpa´1 where p “ prefixΛph
´1aq (Lemma 4.1.8). Since supppλl0q Ĺ Ω,

this implies ghΩpaλl0q “ hpa´1 ¨ aλl0 “ hpλl0. Therefore, given two arbitrary elements
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aλl, aλ1l1 P axstpΛqy, we have pghΩpaλlqq
´1ghΩpaλ

1l1q “ l´1
0 λ´1λ1l10, where supppl´1

0 λ´1λ1l10q Ď

stpΛqXΩ Ĺ Ω. This implies the CphΩq–diameter of πhΩpgxstpΛqyq “ ρgΛhΩ is at most 1 in this

case.

Next we deal with the orthogonality relation.

Definition 4.1.19 (Orthogonality). Let GΓ be a graph product and let SΓ be the index set

of parallelism classes of cosets of graphical subgroups described in Definition 4.1.1. We say

rgΛs K rhΩs if Λ Ď lkpΩq and there exists k P GΓ such that rkΛs “ rgΛs and rkΩs “ rhΩs.

Lemma 4.1.20 (Orthogonality axiom). The relation K has the following properties:

(1) K is symmetric;

(2) If rgΛsKrhΩs, then rgΛs and rhΩs are not Ď–comparable;

(3) If rgΛs Ď rhΩs and rhΩsKrkΠs, then rgΛsKrkΠs.

Proof. (1) If Λ Ď lkpΩq, then all vertices of Λ are connected to all vertices of Ω, hence

Ω Ď lkpΛq too. Thus the relation K is symmetric.

(2) Any graph is disjoint from its own link, hence if rgΛsKrhΩs then rgΛs and rhΩs cannot

be Ď–comparable.

(3) Suppose rgΛs Ď rhΩs and rhΩsKrkΠs. Then Λ Ď Ω Ď lkpΠq, and there exist a, b P GΓ

such that raΛs “ rgΛs, raΩs “ rhΩs “ rbΩs and rbΠs “ rkΠs. In particular, this means

that b´1a P xstpΩqy, hence we can write b´1a “ ωl where ω P xΩy and l P xlkpΩqy. Then

ω´1b´1a “ l P xlkpΩqy Ď xlkpΛqy Ď xstpΛqy, and so raΛs “ rbωΛs. On the other hand,

ω´1b´1b “ ω´1 P xΩy Ď xlkpΠqy Ď xstpΠqy, and so rbΠs “ rbωΠs. Therefore rgΛs K rkΠs,

because Λ Ď lkpΠq and rgΛs “ rbωΛs, rkΠs “ rbωΠs.

Our final relation is transversality, which is a little more nuanced, since our rgΛs and

rhΩs need not have a common representative k in this case.
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Definition 4.1.21 (Transversality and lateral relative projections). If rgΛs, rhΩs P SΓ are

not orthogonal and neither is nested in the other, then we say rgΛs and rhΩs are transverse,

denoted rgΛs&rhΩs. When rgΛs&rhΩs, for each choice of representatives gΛ P rgΛs and

hΩ P rhΩs, define ρhΩ
gΛ Ď CpgΛq by

ρhΩ
gΛ “

ď

kΩ‖hΩ

πgΛ
`

kxΩy
˘

“ πgΛ phxstpΩqyq .

The next lemma verifies that ρhΩ
gΛ has diameter at most 2.

Lemma 4.1.22. If rgΛs&rhΩs, then for any choice of representatives gΛ P rgΛs and hΩ P

rhΩs, we have diam
`

πgΛphxstpΩqyq
˘

ď 2 and diam
`

πhΩpgxstpΛqyq
˘

ď 2.

Proof. We provide the proof for diam
`

πgΛphxstpΩqyq
˘

ď 2. The other case is identical.

Let x, y P hxstpΩqy. Define px “ πgΛpxq “ ggΛpxq and py “ πgΛpyq “ ggΛpyq. If Λ splits

as a join Λ1 ‹ Λ2, then dgΛppx, pyq ď diampCpgΛqq ď 2 by Remark 4.1.7.

Now suppose Λ does not split as a join. Since px, py P gxΛy, we have supppp´1
x pyq Ď Λ.

If supppp´1
x pyq is a proper subgraph of Λ, then the CpgΛq–distance between px and py will

be at most 1. Thus, it suffices to prove supppp´1
x pyq ‰ Λ.

Since rgΛs&rhΩs we have that rgΛs M rhΩs, rgΛs Ď rhΩs, and rhΩs Ď rgΛs. This can

occur in two different ways; either Λ Ę lkpΩq, Ω Ę Λ and Λ Ę Ω, or there does not exist

k P GΓ so that rgΛs “ rkΛs and rhΩs “ rkΩs.

First assume Λ Ę lkpΩq and Λ Ę Ω. Since Λ does not split as a join, if Λ “ stpΩq X Λ,

then Λ would need to be a subgraph of either Ω or lkpΩq. As this is impossible in this case,

we must have that stpΩqXΛ ‰ Λ. By Proposition 4.1.11, every syllable of p´1
x py is a syllable

of x´1y. Since x´1y P xstpΩqy, this implies supppp´1
x pyq Ď stpΩq X Λ ‰ Λ as desired.

Now assume Λ Ď lkpΩq or Λ Ď Ω. Thus, there does not exist k P GΓ so that rgΛs “ rkΛs

and rhΩs “ rkΩs. For the purposes of contradiction, suppose supppp´1
x pyq “ Λ.

Let sx and sy be the suffixes of x and y respectively such that x “ pxsx and y “ pysy.
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Select the following SpΓq–geodesics: αx connecting x and px, αy connecting y and py, η

connecting px and py, γ connecting x and y; see Figure 4.5.

Let t1 . . . tn be the reduced syllable expression for sx corresponding to the geodesic αx.

For each i P t1, . . . , nu, let Hi be the hyperplane crossing the edge of αx labelled by ti. Recall,

a hyperplane in SpΓq crosses a geodesic segment if and only if it separates the end points of

the segment (Proposition 2.6.20(4)). Each Hi therefore separates x and px “ ggΛpxq, so each

Hi must separate x from all of gxΛy by Proposition 2.6.22(4). In particular, no Hi crosses η.

Thus, by Remark 2.6.21, each Hi must cross either γ or αy. If Hi crosses γ, then ti P xstpΩqy.

On the other hand, if Hi crosses αy, then Hi must cross every hyperplane that separates px

and py; see Figure 4.4. Because supppp´1
x pyq “ Λ, it follows that for every vertex v of Λ there

exists a hyperplane that separates px and py and is labelled by v. Hence, if Hi crosses αy,

then Hi crosses at least one hyperplane that is labelled by each vertex of Λ. By Proposition

2.6.20(5), if two hyperplanes cross then they are labelled by adjacent vertices in Γ. Thus,

the vertex labelling Hi must be in the link of Λ. In particular, ti P xlkpΛqy.

Hi

x y

px py

gxΛy

αx αy

hxstpΩqy

Figure 4.4: Any hyperplane that crosses αx and αy must cross all of the hyperplanes sepa-
rating px and py.

The above shows that ti P xstpΩqy or ti P xlkpΛqy for each i P t1, . . . , nu. Further,

ti P xstpΩqy if Hi crosses γ and ti P xlkpΛqy if Hi crosses αy. Now suppose i ă j and that

Hi crosses γ, but Hj crosses αy. As shown in Figure 4.5, this forces Hi to cross Hj, which

implies that ti and tj commute by Proposition 2.6.20(5). Thus, by commuting the syllables
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of sx, we have sx “ lxωx where ωx P xstpΩqy and lx P xlkpΛqy.

Hj

x y

px py

gxΛy

α
x α y

Hi

γ

hxstpΩqy

Figure 4.5: The hyperplane Hi crosses αx and γ while Hj crosses αx and αy. Since Hi

appears before Hj along αx, Hi must cross Hj.

Now, since x P hxstpΩqy, we have h´1x P xstpΩqy, which implies rhΩs “ rxΩs. Since x “

pxsx “ pxlxωx, we have rxΩs “ rpxlxωxΩs “ rpxlxΩs. Similarly, px P gxΛy, so g´1px P xΛy,

which implies rgΛs “ rpxΛs. Now, rpxΛs “ rpxlxΛs as p´1
x ppxlxq “ lx P xlkpΛqy Ď xstpΛqy.

Thus we have

rhΩs “ rpxlxΩs and rgΛs “ rpxlxΛs.

However, this contradicts our assumption that there is no k P GΓ such that rhΩs “ rkΩs and

rgΛs “ rkΛs, proving we must have supppp´1
x pyq ‰ Λ as desired.

4.1.3 The proto-hierarchy structure

We now combine the work in this section to give a proto-hierarchy structure for GΓ.

Theorem 4.1.23. Let GΓ be a graph product of finitely generated groups. For each paral-

lelism class rgΛs P SΓ, fix a representative gΛ P rgΛs. The following is a 2–proto-hierarchy

structure for pGΓ, dq.

• The index set is the set of parallelism classes SΓ defined in Definition 4.1.1.

• The space CprgΛsq associated to rgΛs is the space CpgΛq from Definition 4.1.3, where

gΛ is the fixed representative of rgΛs.
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• The projection map πrgΛs : GΓ Ñ CprgΛsq is the map πgΛ : GΓ Ñ CpgΛq from Definition

4.1.9 for the fixed representative gΛ P rgΛs.

• rgΛs Ď rhΩs if Λ Ď Ω and there exists k P GΓ such that rkΛs “ rgΛs and rkΩs “ rhΩs.

• The upwards relative projection ρrgΛs
rhΩs when rgΛs Ĺ rhΩs is the set ρgΛhΩ from Definition

4.1.17, where gΛ and hΩ are the fixed representatives for rhΩs and rgΛs.

• rgΛs K rhΩs if Λ Ď lkpΩq and there exists k P GΓ such that rkΛs “ rgΛs and rkΩs “

rhΩs.

• rgΛs&rhΩs whenever rgΛs and rhΩs are not orthogonal and neither is nested into the

other.

• The lateral relative projection ρ
rgΛs
rhΩs when rgΛs&rhΩs is the set ρgΛhΩ from Definition

4.1.21, where gΛ and hΩ are the fixed representatives for rhΩs and rgΛs.

Proof. The projection map πrgΛs is shown to be p1, 0q–coarsely Lipschitz in Lemma 4.1.12.

Nesting is shown to be a partial order in Lemma 4.1.16. The upward relative projection has

diameter at most 2 by Lemma 4.1.18. Lemma 4.1.20 shows that orthogonality is symmetric

and mutually exclusive of nesting, and that nested domains inherit orthogonality. The lateral

relative projections have diameter at most 2 by Lemma 4.1.22.

4.2 Graph products are relative HHGs

In this section, we complete our proof that graph products of finitely generated groups are

relative HHGs (Theorem 4.2.22) by proving the eight remaining HHS axioms and showing

that the group structure is compatible with our hierarchy structure. In Section 4.2.1, we

prove hyperbolicity of CpgΛq whenever Λ contains at least two vertices. Section 4.2.2 is

devoted to proving the finite complexity and containers axioms. Section 4.2.3 deals with the
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uniqueness axiom, and in Section 4.2.4, we the prove the bounded geodesic image and large

links axioms. In Section 4.2.5, we verify partial realisation, and Section 4.2.6 deals with the

consistency axiom. Finally, in Section 4.2.7, compatibility of the relative HHS structure with

the group structure is checked.

We also obtain some auxiliary results along the way: in Section 4.2.1, we show that

not only are the spaces CpgΛq hyperbolic whenever Λ contains at least 2 vertices, but they

are also quasi-trees; and in Section 4.2.3, we use uniqueness to give a classification of when

CpgΛq has infinite diameter.

We conclude the section by remarking that the syllable metric on GΓ is a hierarchically

hyperbolic space. This is true even when the vertex groups are not finitely generated.

However, until then we will continue to assume GΓ is a graph product of finitely generated

groups and that d is the word metric on GΓ, where the generating set for GΓ is given by

taking a union of finite generating sets for each vertex group.

4.2.1 Hyperbolicity

Lemma 4.2.1 (Hyperbolicity). For each rgΛs P SΓ, either rgΛs is Ď–minimal or CpgΛq is

7
2
–hyperbolic.

Remark 4.2.2. The hyperbolicity of CpgΛq can also be deduced from [Gen18, Proposi-

tion 6.4]. The proof presented below uses a different argument that produces the explicit

hyperbolicity constant of 7
2
.

Proof. Take rgΛs P SΓ and suppose it is not Ď–minimal, i.e., Λ contains at least two vertices.

Let x, y, z P CpgΛq be three distinct points and let γ1, γ2, γ3 be three CpgΛq–geodesics

connecting the pairs ty, zu, tz, xu, tx, yu respectively. We wish to show this triangle is 7
2
–

slim, that is, we will show that γ1 is contained in the 7
2
–neighbourhood of γ2 Y γ3. Since

CpgΛq is a metric graph whose edges have length 1, it suffices to show that any vertex of γ1

is at distance at most 3 from γ2 Y γ3.
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Let pi1, . . . , pimi be the vertices of γi, and let γ1i be the path in SpgΛq obtained by connecting

each pair of consecutive vertices pij and pij`1 with an SpgΛq–geodesic αij. Since αij is labelled

by vertices of supppppijq
´1pij`1q, which is a proper subgraph of Λ, the CpgΛq–distance between

any vertex of αij and pij or pij`1 is at most 1. It therefore suffices to show that given any

vertex p1
j of γ1, either α1

j´1 or α1
j is CpgΛq–distance 1 from some αit with i “ 2 or 3. See

Figure 4.6.

γ3

x

γ2

y p1
j´1

p1
j

γ1

p1
j`1

z

α1
j

α1
j´1

ď 1

ď 1

ď 1

Figure 4.6: For each edge of the CpgΛq–geodesic triangle, we construct an SpgΛq–geodesic
segment αij between its endpoints (shown in blue). To show the triangle is 7

2
–slim, it then

suffices to show that for each j, α1
j´1 Y α

1
j is CpgΛq–distance 1 from some αit with i ‰ 1.

If Λ has no edges, then xΛy is the free product of the vertex groups, hence SpgΛq is a tree

of simplices, that is, any cycle in SpgΛq is contained in a single simplex (a coset of a vertex

group). Therefore any two paths in SpgΛq with the same endpoints are contained in the

1–neighbourhood of each other, and in particular γ11 is contained in the 1–neighbourhood of

γ12 Y γ
1
3. Thus, any vertex of γ1 is at distance at most 3 from γ2 Y γ3 in CpgΛq.

Now suppose Λ has at least one edge, so that it has a vertex w with non-empty link. We

may also assume that Λ does not split as a join; otherwise, CpgΛq has diameter 2 by Remark

4.1.7 and hence is clearly 7
2
–hyperbolic. Take a vertex p1

j of γ1. If p1
j is one of the first or last
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4 vertices of γ1, then it is at distance at most 3 from γ2 or γ3. Otherwise p1
j is an endpoint

of two consecutive edges Lj´1 and Lj of γ1 labelled by strict subgraphs Λj´1 and Λj of Λ.

We must have Λj´1 Y Λj “ Λ, as otherwise we could replace these two edges with a single

edge, contradicting γ1 being a CpgΛq–geodesic. It follows that all vertices of Λ appear as

labels on the edges of the geodesic segments α1
j´1 and α1

j of γ11 corresponding to Lj´1 and

Lj. Consider the collection Ew of edges of α1
j´1 Y α1

j labelled by the fixed vertex w with

lkpwqXΛ ‰ H, and consider the collection Hw of hyperplanes in SpgΛq dual to the edges in

Ew. We proceed to construct an SpgΛq–path from an edge of Ew to some αit with i “ 2 or 3,

either by travelling through the carrier of a single hyperplane, labelled by stpwq XΛ Ĺ Λ, or

by following a sequence of combinatorial hyperplanes labelled by lkpwq X Λ Ĺ Λ. Since this

path will be labelled by a proper subgraph of Λ, the CpgΛq–distance between its endpoints

will be 1.

Suppose some hyperplane H P Hw also crosses a geodesic segment αit of γ12 Y γ13. Since

the carrier of H is labelled by vertices of stpwq X Λ, and stpwq X Λ is a strict subgraph of Λ

because Λ does not split as a join, it follows that p1
j is at most CpgΛq–distance 3 from either

γ2 or γ3, as desired.

Suppose therefore that no hyperplane of Hw crosses γ12 Y γ13. This means that each

H P Hw must cross γ11 a second time (Remark 2.6.21). Further, Proposition 2.6.20(5) tells

us that no two hyperplanes labelled by the same vertex may cross each other. It follows that

there exists an outermost hyperplane H0 of Hw; that is, no hyperplane of Hw crosses edges

of γ11 both earlier and later than H0 does. Moreover, H0 has an outermost combinatorial

hyperplane H 1
0; see Figure 4.7. Note that since this combinatorial hyperplane is labelled

by vertices of lkpwq X Λ Ĺ Λ, the CpgΛq–distance between any two points on H 1
0 is 1. In

particular, since γ1 is a CpgΛq–geodesic, it follows that the segments α1
r and α1

k that H 1
0

intersects must satisfy |k ´ r| ď 2. As we know that H0 crosses α1
j´1 Y α1

j , this implies H 1
0

must intersect α1
j´1 Y α1

j too. Recalling that a hyperplane may not cross the same geodesic
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twice (Proposition 2.6.20(4)), we may therefore suppose without loss of generality that r “ j

and j ă k ď j ` 2 (the cases where j ´ 2 ď k ă j or r “ j ´ 1 proceed similarly).

H 1
0

w w
w w

w

H0

α1
jα1

j´1

pj´1 pj pj`1 pj`2

Figure 4.7: The outermost hyperplane H0 of Hw and its outermost combinatorial hyperplane
H 1

0.

Let E0 be the edge of Ew on α1
j that H0 crosses, and let e1 and e2 denote its endpoints.

Let F0 be the edge of α1
k labelled by w that H0 crosses, and denote its endpoints by f1

and f2. Then there is a path η connecting e1 and f2 that is contained in the combinatorial

hyperplane H 1
0 labelled by vertices of lkpwq X Λ Ĺ Λ. Furthermore, if w does not appear

as a label of an earlier edge of α1
j or a later edge of α1

k, then dgΛpp1
j , p

1
k`1q “ 1 as the path

obtained by travelling from p1
j to e1 along α1

j , then from e1 to f2 along η, then from f2 to

p1
k`1 along α1

k is labelled by the proper subgraph Λ r w. This contradicts the assumption

that γ1 is a CpgΛq–geodesic. On the other hand, if w appears as a label of an earlier edge

E´1 of α1
j (take the closest one to E0) but not a later edge of α1

k, then the corresponding

hyperplane H´1 must cross a segment α1
l with l ă j (since H0 is outermost), and there exists

an SpgΛq–path ξ labelled by Λrw connecting e1 and α1
l . Then the CpgΛq–distance between

the endpoints of the path ξ Y η is 1 and so we obtain dgΛpp1
l , p

1
k`1q ď 2, a contradiction.

There therefore exists some edge labelled by w which appears after F0 on α1
k. Let E1 be the

closest such edge to H0, and consider the hyperplane H1 dual to E1.

If H1 crosses α1
s with |s ´ j| ě 3, then we obtain a contradiction since we have a path

in CpgΛq from p1
j to p1

s`1 (or p1
j`1 to p1

s if s ă j) of length at most 3. If H1 crosses α1
s with

|s´ k| ě 3, then similarly we obtain a contradiction. Assume therefore that |s´ j| ď 2 and
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|s´ k| ď 2. Note that since H0 and H1 cannot cross, we must have s ă j or s ą k.

If s ă j then we must have k “ j ` 1 and s “ j ´ 1. In this case, H1 crosses α1
j´1, which

contradicts our assumption that H0 is an outermost hyperplane of Hw.Thus H1 cannot cross

any α1
s with s ă k. This implies that if H1 crosses a segment αis with i “ 2 or 3, then we can

conclude that p1
j is at most CpgΛq–distance 3 from either γ2 or γ3, by following a sequence

of geodesics labelled by vertices of lkpwq X Λ and contained in combinatorial hyperplanes

associated to H0 and H1; see Figure 4.8.

p1
j

p1
j´1 p1

j`1

α1
j´1 α1

j

lkpwq X Λ lkpwq X Λ

Λ r w

w w
w

Figure 4.8: By following a sequence of combinatorial hyperplanes, we obtain a path labelled
by Λ r w (shown in red) that must eventually leave γ11 and cross γ12 Y γ13.

On the other hand, if H1 crosses α1
s with s ą k, then k “ j` 1 and s “ j` 2. Repeating

the same process, there must exist a later edge of α1
s labelled by w. Let H2 be the hyperplane

dual to the closest such edge to H1. If H2 also crosses α1
t where t ‰ s, then we must have

t ă j “ s ´ 2 or t ą s “ j ` 2, as H2 cannot cross the previous hyperplanes. However, the

first case results in |t ´ s| ě 3, and the second case gives |t ´ j| ě 3, both of which give

a contradiction. Therefore H2 must cross αit where i “ 2 or 3. Following the sequence of

geodesics labelled by vertices of Λ r w, we again see that p1
j is at most CpgΛq–distance 3

from either γ2 or γ3.

A similar technique can moreover show that the spaces CpgΛq are quasi-trees, by applying

Manning’s bottleneck criterion.
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Theorem 4.2.3 (Bottleneck criterion [Man05, Theorem 4.6]). Let Y be a geodesic metric

space. The following are equivalent:

(1) Y is quasi-isometric to some simplicial tree T ;

(2) There is some ∆ ą 0 so that for all y, z P Y there is a midpoint m “ mpy, zq with

dpy,mq “ dpz,mq “ 1
2
dpy, zq and the property that any path from y to z must pass

within a distance ∆ of m.

Theorem 4.2.4. For each rgΛs P SΓ, either rgΛs is Ď–minimal or CpgΛq is a quasi-tree.

The proof of Theorem 4.2.4 proceeds similarly to the proof of Lemma 4.2.1, with the role

of γ1 being played by a geodesic from y to z containing the midpoint mpy, zq, and replacing

γ2 Y γ3 with an arbitrary path from y to z.

Proof. Suppose rgΛs is not Ď–minimal. Let x, y P CpgΛq, let γ be a CpgΛq–geodesic con-

necting x and y, and let β be another CpgΛq–path from x to y. From γ and β we may obtain

paths γ1 and β1 in SpgΛq by replacing each edge with a geodesic segment in SpgΛq. Note

that any point on such a segment is CpgΛq–distance 1 from the endpoints of the segment.

Let m be the midpoint of γ, so that m is either a vertex of γ or a midpoint of an edge.

If Λ has no edges, then SpgΛq is a tree of simplices in the same manner as in the previous

proof, and in particular any two paths in SpgΛq between x and y are contained in the 1–

neighbourhood of each other. Applying this to γ1 and β1 shows that m is at distance at most

∆ “ 7
2
from β.

Now suppose Λ has at least one edge, and let L1 and L2 be two edges of γ adjacent to m

(if m is the midpoint of an edge L, pick L and one edge adjacent to it). Then L1 and L2 are

labelled by strict subgraphs Λ1 and Λ2 of Λ such that Λ1 Y Λ2 “ Λ. Thus either Λ1 or Λ2

contains a vertex w with non-empty link, and w therefore appears as a label of a hyperplane

crossing an edge of the corresponding geodesic segments α1 and α2 of γ1.
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We can now repeat the argument in the proof of Lemma 4.2.1 to find a path connecting

α1 Y α2 to β1 that is labelled by a proper subgraph of Λ. It follows that m is at most

CpgΛq–distance ∆ “ 7
2
from β.

4.2.2 Finite complexity and containers

Lemma 4.2.5 (Finite complexity). Any set of pairwise Ď–comparable elements has cardi-

nality at most |V pΓq|.

Proof. If rgΛs Ď rhΩs and Λ and Ω have the same number of vertices, then we must have

Λ “ Ω and rgΛs “ rkΛs “ rkΩs “ rhΩs for some k P GΓ. Therefore, any two distinct

Ď–comparable elements must have different numbers of vertices. Thus any set of pairwise

Ď–comparable elements has cardinality at most |V pΓq|.

Lemma 4.2.6 (Containers). Let rhΩs Ĺ rgΛs be elements of SΓ. If there exists rkΠs P SΓ

such that rkΠs Ď rgΛs and rkΠsKrhΩs, then rkΠs Ď raplkpΩq X Λqs Ĺ raΛs where a P GΓ

satisfies raΛs “ rgΛs and raΩs “ rhΩs.

Proof. First, since rkΠs Ď rgΛs and rkΠsKrhΩs, we have Π Ď Λ and Π Ď lkpΩq, hence

Π Ď lkpΩq X Λ Ĺ Λ. Next, let b P GΓ be such that rbΠs “ rkΠs and rbΩs “ rhΩs, and let

c P GΓ be such that rcΠs “ rkΠs and rcΛs “ rgΛs. We claim that there exists d P GΓ such

that rkΠs “ rdΠs and raplkpΩq X Λqs “ rdplkpΩq X Λqs, which would complete our proof.

Indeed, k´1a “ k´1bb´1a “ k´1cc´1a, and we know that supppk´1bq Ď stpΠq, supppb´1aq Ď

stpΩq, supppk´1cq Ď stpΠq, supppc´1aq Ď stpΛq. Writing p “ prefixstpΠqpk
´1aq, we have

p´1k´1a “ s, where prefixstpΠqpsq “ e. That is, prefixstpΠqpp
´1k´1bb´1aq “ e. Since

p´1k´1b P xstpΠqy and b´1a P xstpΩqy, this implies p´1k´1a P xstpΩqy. Similarly, writing

k´1a “ k´1cc´1a shows us that p´1k´1a P xstpΛqy.

That is, we can write k´1a “ ps where p P xstpΠqy and s P xstpΩq X stpΛqy. But

Ω Ď Λ and lkpΛq Ď lkpΩq, hence stpΩq X stpΛq “ Ω Y lkpΛq Y plkpΩq X Λq. Moreover,
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Ω Y lkpΛq Ď lkplkpΩq X Λq, hence s P xstplkpΩq X Λqy. Thus k´1as´1 “ p P xstpΠqy and

a´1as´1 P xstplkpΩq X Λqy. Letting d “ as´1, we have rkΠs “ rdΠs and raplkpΩq X Λqs “

rdplkpΩq X Λqs as desired.

4.2.3 Uniqueness

Here we prove the uniqueness axiom, which tells us that all geometry of GΓ is witnessed

by some associated space CpgΛq. This means we do not lose any geometric information

through our projections. We also use this axiom to classify boundedness of the hyperbolic

spaces CpgΛq. In what follows, | ¨ |GΓ
denotes the word length on GΓ with respect to the

generating set S defined at the beginning of Section 4.1.

Lemma 4.2.7 (Uniqueness). Let GΓ be a graph product of finitely generated groups. There

exists a function θ : r0,8q Ñ r0,8q, depending only on the number of vertices of Γ, so that

for all g P GΓ, if dhΛpe, gq ď r for all h P GΓ and subgraphs Λ Ď Γ, then |g|GΓ
ď θprq.

Proof. Let r ě 0. If Γ is a single vertex, then the conclusion is immediate as the only

subgraph is Γ and CpΓq “ GΓ. Suppose Γ contains n ` 1 vertices and assume the lemma

holds for any graph product of finitely generated groups whose defining graph contains at

most n vertices. Suppose g P GΓ with dhΛpe, gq ď r for all h P GΓ and subgraphs Λ Ď Γ.

Since dΓpe, gq ď r, there exist proper subgraphs Λi Ĺ Γ and elements λi with supppλiq “

Λi so that g “ λ1 . . . λm and dΓpe, gq “ m ď r. We shall see that dhΩpe, gq ď r implies

dhΩpe, λiq is uniformly bounded for each Ω Ď Λi and h P xΛiy. Since each xΛiy is a graph

product on at most n vertices, induction will imply the word length of each λi is bounded,

which in turn will bound the word length of g.

If Γ splits as a join Γ “ Λ1 ‹ Λ2, then any element g P GΓ can be written in the form

g “ λ1λ2 where λi P xΛiy for i “ 1, 2 and |g|GΓ
“ |λ1|GΓ

` |λ2|GΓ
. Moreover, if h P xΛiy

and Ω Ď Λi, then ghΩpgq “ h ¨ prefixΩph
´1gq “ h ¨ prefixΩph

´1λiq “ ghΩpλiq. Therefore
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dhΩpe, λiq “ dhΩpe, gq ď r and by induction there exists D “ Dpn, rq so that |λi|GΓ
ď D for

i “ 1, 2. Thus, |g|GΓ
ď 2D, which depends only on r and the number of vertices of Γ.

Suppose Γ does not split as a join, and define p0 “ e and pi “ λ1 ¨ ¨ ¨λi for i P t1, . . . ,mu.

Note that the pi are the vertices of the CpΓq–geodesic connecting e and g with edges labelled

by the λi. By Lemma 4.1.5, we can assume that suffixΛippi´1q “ e for each i P t2, . . . ,mu

and that there exists an SpΓq–geodesic connecting e to g that contains each pi as a vertex.

Fix i P t1, . . .mu, h P xΛiy, and Ω Ď Λi.

As stated above, we wish to show dhΩpe, λiq is bounded uniformly in terms of r so that

we can apply the induction hypothesis. Since dhΩpe, λiq is independent of the choice of

representative of the coset hxΩy, we can assume suffixΩphq “ e. To achieve the bound on

dhΩpe, λiq, we use the following two claims plus the assumption that dhΩpe, gq ď r.

Claim 4.2.8. πpi´1hΩppi´1q “ πpi´1hΩpeq.

Proof. By equivariance of the gate map and the prefix description of the gate map (Lemma

2.6.24),

gpi´1hΩppi´1q “ pi´1h ¨ prefixΩph
´1
q and gpi´1hΩpeq “ pi´1h prefixΩph

´1p´1
i´1q.

Since prefixΛi
pp´1
i´1q “ e, we have prefixΩpp

´1
i´1q “ e too. Since h P xΛiy and prefixΩpp

´1
i´1q “

e, we have prefixΩph
´1p´1

i´1q “ prefixΩph
´1q and so gpi´1hΩppi´1q “ gpi´1hΩpeq. This implies

πpi´1hΩppi´1q “ πpi´1hΩpeq.

Claim 4.2.9. dpi´1hΩppi, gq ď r.

Proof of Claim 4.2.9. Recall, we can write each λi in reduced syllable form to produce an

SpΓq–geodesic connecting e and g and containing each pi as a vertex (Lemma 4.1.5). Thus,

Lemma 4.1.13 says dpi´1hΩppi, gq ď dpi´1hΩpe, gq, and dpi´1hΩpe, gq ď r by assumption.
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By the equivariance of the gate map (Proposition 2.6.22(2)), dhΩpe, λiq “ dpi´1hΩppi´1, piq.

Claim 4.2.8 then implies

dpi´1hΩppi´1, piq “ dpi´1hΩpe, piq ď dpi´1hΩpe, gq ` dpi´1hΩpg, piq.

Since dpi´1hΩpe, gq ď r by assumption and dpi´1hΩpg, piq ď r by Claim 4.2.9, we have

dhΩpe, λiq “ dpi´1hΩppi´1, piq ď 2r for each h P xΛiy and Ω Ď Λi. The induction hypoth-

esis now implies there exists D “ Dpn, rq such that the word length of λi in xΛiy is at most

D. Since each graphical subgroup is convexly embedded in the word metric d on GΓ, this

implies |g|GΓ
ď rD, which depends only on r and the number of vertices of Γ.

The uniqueness axiom allows us to classify boundedness of the hyperbolic spaces CpgΛq.

Theorem 4.2.10. For any g P GΓ and any subgraph Λ of Γ containing at least two vertices,

the space CpgΛq has infinite diameter if and only if Λ does not split as a join.

Proof. Recall, if Λ splits as a join, then diampCpgΛqq ď 2 by Remark 4.1.7. Suppose therefore

that Λ does not split as a join and let v1, . . . , vk be the vertices of Λ. For each i P t1, . . . , ku,

pick si P Svi , where Svi is the finite generating set for Gvi that we fixed at the beginning of

Section 4.1. Define λ “ s1 . . . sk. For each i P t1, . . . , ku and j P t1, . . . , nu, let sji be the jth

copy of si in the product ps1 . . . skq
n “ λn, that is, λn “ ps1

1 . . . s
1
kqps

2
1 . . . s

2
kq . . . ps

n
1 . . . s

n
kq.

We claim that for each n P N, ps1
1 . . . s

1
kqps

2
1 . . . s

2
kq . . . ps

n
1 . . . s

n
kq is a reduced syllable

expression for λn. Indeed, if ps1
1 . . . s

1
kqps

2
1 . . . s

2
kq . . . ps

n
1 . . . s

n
kq is not reduced, then there

exists sji that is combined with some s`i (j ‰ `) after applying some number of commutation

relations. However, if s`i were to be combined with sji , then si would need to commute

with each of s1, . . . , si´1, si`1, . . . , sk. This only happens if the vertex vi is connected to

every other vertex of Λ, but this does not happen as Λ does not split as a join. Therefore

ps1
1 . . . s

1
kqps

2
1 . . . s

2
kq . . . ps

n
1 . . . s

n
kq is a reduced syllable expression for λn, and we have |λn|syl “

kn for all n P N.
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To prove CpΛq has infinite diameter, we use the following claim plus the uniqueness axiom

to show that dΛpe, λ
nq can be made as large as desired by increasing n.

Claim 4.2.11. For all Ω Ĺ Λ, h P xΛy and n ě 2, dhΩpe, λ
nq ď 3.

For now we accept Claim 4.2.11, deferring its proof until after we have proved CpΛq has

infinite diameter.

For the purposes of contradiction, assume there exists R ą 0 such that dΛpe, λ
nq ď R

for all n P N. By Claim 4.2.11, for every proper subgraph Ω Ĺ Λ and h P xΛy, we have

dhΩpe, λ
nq ď 3. Applying the uniqueness axiom (Lemma 4.2.7) to the graph product xΛy “

GΛ, this implies there exists D “ DpR, |V pΛq|q ą 0 such that |λn|GΛ
“ |λn|GΓ

ď D for all

n P N. However, this is a contradiction as |λn|GΓ
ě |λn|syl “ kn for all n P N. Thus, for each

R ą 0, there exists nR such that dΛpe, λ
nRq ą R. Therefore CpΛq, and hence CpgΛq, has

infinite diameter.

Proof of Claim 4.2.11. Let Ω Ĺ Λ be a proper subgraph and h P xΛy. Since dhΩpe, λ
nq does

not depend on the choice of representative of the coset hxΩy, we can assume suffixΩphq “ e,

and thus prefixΩph
´1q “ e.

Recall, πhΩpeq “ h ¨ prefixΩph
´1q and πhΩpλ

nq “ h ¨ prefixΩph
´1λnq (Remark 4.1.10).

Since prefixΩph
´1q “ e, it suffices to prove that dΩpe, h

´1λnq ď 3. We can also assume that

prefixΩph
´1λnq ‰ e.

By Proposition 4.1.11, all syllables of prefixΩph
´1λnq are syllables of λn. As prefixΩph

´1λnq ‰

e, there must exist i P t1, . . . , ku and j P t1, . . . , nu such that sji is the first syllable of

ps1
1 . . . s

1
kqps

2
1 . . . s

2
kq . . . ps

n
1 . . . s

n
kq that is also a syllable of prefixΩph

´1λnq.

Let `,m P t1, . . . , ku be such that v` P Λ r stpΩq and vm P Ω is not joined to v` by an

edge. These vertices exist since Λ does not split as a join and thus Λ ‰ stpΩq. We will show

that prefixΩph
´1λnq can be written as a product p1p2p3 where supppp2q is a single vertex

v of Ω and supppp1q, supppp3q Ď Ω r v. This implies the CpΩq–distance between e and

prefixΩph
´1λnq is at most 3, which in turn says dhΩpe, λ

nq ď 3.
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Suppose i ă `. Since v` R Ω, every syllable of prefixΩph
´1λnq must either be one of

sji , s
j
i`1, . . . , s

j
`´1 or must commute with sj`. As sm does not commute with s`, it follows

that no sJm is a syllable of prefixΩph
´1λnq for J ą j. Therefore prefixΩph

´1λnq can contain

at most one syllable with support vm, namely sjm. Thus prefixΩph
´1λnq “ p1p2p3 with

supppp1q Ď Ω r vm, supppp2q Ď vm, and supppp3q Ď Ω r vm. Note, if Ω “ vm, then

prefixΩph
´1λnq “ p2 “ sjm and dhΩpe, λ

nq “ dΩpe, s
j
mq “ 1 because sjm P Svm .

The case i ą ` proceeds similarly because every syllable of prefixΩph
´1λnq must either be

one of sji , s
j
i`1, . . . , s

j
k, s

j`1
1 , . . . , sj`1

`´1 or must commute with sj`1
` .

In Section 4.3, we use our characterisation of when CpgΛq has infinite diameter to answer

two questions of Genevois [Gen19b] (Theorems 4.3.10 and 4.3.12).

4.2.4 Bounded geodesic image and large links

As the bounded geodesic image axiom is used to prove large links, we include both in this

section.

Lemma 4.2.12 (Bounded geodesic image). Let x, y P GΓ and rhΩs Ĺ rgΛs. For any choice

of representatives hΩ P rhΩs and gΛ P rgΛs, if dhΩpx, yq ą 0, then every CpgΛq–geodesic γ

from πgΛpxq to πgΛpyq intersects the closed 2–neighbourhood of ρhΩ
gΛ .

Proof. We first need to establish that when rhΩs Ď rgΛs, gating onto hxΩy is the same as

first gating onto gxΛy and then gating onto hxΩy. This will allow us to relate πgΛpxq and

πhΩpxq.

Claim 4.2.13. If rhΩs Ď rgΛs, then ghΩpggΛpxqq “ ghΩpxq for all x P GΓ and for all

representatives gΛ P rgΛs and hΩ P rhΩs.

Proof. Let k P GΓ so that rkΩs “ rhΩs and rkΛs “ rgΛs. Without loss of generality, we can

assume x R gxΛy.
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gxΛy

hxΩy

x
y

ggΛpyq

ghΩpyq

ggΛpxq

ghΩpxq

Hη

αia0

b0

γ1

Figure 4.9: The SpΓq–geodesic η connecting b0 P hxΩy and a0 P αi when dhΩpx, yq ą 0.

Suppose ghΩpggΛpxqq ‰ ghΩpxq. Then there is a hyperplane H separating ghΩpggΛpxqq

and ghΩpxq. By Proposition 2.6.22, H also separates ggΛpxq and x and cannot cross gxΛy.

However, we know that H crosses hxΩy Ď hxΛy and by parallelism (Proposition 4.1.2) H

must also cross kxΩy Ď kxΛy. But kΛ ‖ gΛ, so H must also cross gxΛy. This contradiction

means we must have ghΩpggΛpxqq “ ghΩpxq.

Let γ be a CpgΛq–geodesic from πgΛpxq to πgΛpyq and let p1, . . . , pn P xΛy so that πgΛpxq “

gp1, gp2, . . . , gpn “ πgΛpyq are the vertices of γ. Let αi be an SpgΛq–geodesic from gpi to

gpi`1 for each i P t1, . . . , n´ 1u. Let γ1 be the path in SpgΛq that is the union of all the αi.

Suppose dhΩpx, yq ą 0. Then dsylpghΩpxq, ghΩpyqq ą 0 and so there is a hyperplane

H separating ghΩpxq “ ghΩpggΛpxqq and ghΩpyq “ ghΩpggΛpyqq that is labelled by a vertex

w P V pΩq. The hyperplane H then also separates ggΛpxq and ggΛpyq by Proposition 2.6.22.

Thus, H must cross one of the segments αi that make up γ1. Since H crosses both hxΩy

and αi and H cannot separate ggΛpxq from ghΩpxq nor ggΛpyq from ghΩpyq, there exists an

SpΓq–geodesic, η, from an element b0 P hxΩy to a0 P αi that is labelled by vertices in lkpwq;

see Figure 4.9.

115



Let a1 “ πgΛpa0q and b1 “ πgΛpb0q. Since η was labelled by vertices in lkpwq, Proposition

4.1.11 tells us we have supppa´1
1 b1q Ď lkpwqXΛ, which is a proper subgraph of Λ. Thus, in the

subgraph metric, dgΛpαi, ρhΩ
gΛq ď 1 as a1 P πgΛpαiq and b1 P πgΛphxΩyq Ď ρhΩ

gΛ . As αi is labelled

by a proper subgraph of Λ, any subsegment is also labelled by a proper subgraph, hence

dgΛpga, gpi`1q ď 1 for any vertex ga of αi. Thus, dgΛpga, γq ď 1 and therefore dgΛpγ, ρhΩ
gΛq ď

2.

We can now use the bounded geodesic image axiom together with the following lemma

to prove large links.

Lemma 4.2.14. Let rgΛs, rhΩs P SΓ. For any representatives gΛ P rgΛs and hΩ P rhΩs, if

diampπgΛphxΩyqq ą 2, then rgΛs Ď rhΩs.

Proof. If rgΛs&rhΩs or rhΩs Ĺ rgΛs, then πgΛ
`

hxΩy
˘

Ď ρhΩ
gΛ , which is shown to have diameter

at most 2 in Lemmas 4.1.18 and 4.1.22. If rgΛs K rhΩs, then Λ Ď lkpΩq. Let ω P xΩy. Then

ggΛphωq “ g ¨ prefixΛpg
´1hωq. Assume without loss of generality that suffixΛpgq “ e and

suffixΩphq “ e. By Proposition 4.1.11, all syllables of prefixΛpg
´1hωq are syllables of hω.

Further, since Λ Ď lkpΩq, we have supppωq X Λ “ H. As suffixΩphq “ e, this implies

prefixΛpg
´1hωq “ prefixΛpg

´1hq. Thus πgΛphωq “ g ¨ prefixΛpg
´1hq for all ω P xΩy, and so

πgΛphxΩyq has diameter 0.

Lemma 4.2.15 (Large links). Let x, y P GΓ and n “ dkΠpx, yq where k P GΓ and Π Ď Γ.

There exist rh1Ω1s, . . . , rhnΩns P SΓ each nested into rkΠs so that for any rgΛs P SΓ with

rgΛs Ĺ rkΠs, if dgΛpx, yq ą 18 for some representative of rgΛs, then rgΛs Ď rhiΩis for some

i P t1, . . . , nu.

Proof. Let γ be a CpkΠq–geodesic connecting πkΠpxq and πkΠpyq, let πkΠpxq “ p0, p1, ¨ ¨ ¨ , pn “

πkΠpyq be the vertices of γ, and let λi “ p´1
i´1pi for each i P t1, . . . , nu. For i P t1, . . . , nu,

define Ti to be pi´1 ¨ xsupppλiqy. Note that pi P Ti´1 X Ti, and Ti Ď kxΠy since pi´1 P kxΠy
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and supppλiq Ĺ Π. In particular, rTis Ĺ rkΠs. Note also that πkΠpTiq = Ti is contained in

the closed 1–neighbourhood of pi in CpkΠq, because supppλiq is a proper subgraph of Π.

Next, let rgΛs P SΓ with rgΛs Ĺ rkΠs and suppose dgΛpx, yq ą 18 for some representative

gΛ P rgΛs. We shall show rgΛs Ď rTis for some i P t1, . . . , nu. Since we have established the

bounded geodesic image axiom (Lemma 4.2.12), we have γXN2pρ
gΛ
kΠq ‰ H. Let j be the first

number in t0, . . . , nu so that pj P N4pρ
gΛ
kΠq, and recall that each πkΠpTiq “ Ti is contained

in N1ppiq and diampρgΛkΠq ď 2 (Lemma 4.1.18). Therefore, if 1 ď i ď j or i ě j ` 10, then

πkΠpTiqXN2pρ
gΛ
kΠq “ H and the bounded geodesic image axiom says πgΛpTiq is a single point.

Since Ti´1 X Ti ‰ H for i P t2, . . . , nu and x P T1, y P Tn, we have

πgΛ

˜

j
ď

i“1

Ti

¸

“ πgΛpxq and πgΛ

˜

n
ď

i“j`10

Ti

¸

“ πgΛpyq

whenever j ą 0 and j ` 9 ă n respectively. This implies

dgΛpx, yq ď
mintn,j`9u

ÿ

i“j`1

diam
`

πgΛ pTiq
˘

.

Since dgΛpx, yq ą 18, there exists j0 P tj`1, . . . ,mintn, j`9uu so that diam
`

πgΛpTj0q
˘

ą

2. By Lemma 4.2.14, this implies rgΛs Ď rTj0s.

4.2.5 Partial realisation

We now prove partial realisation, which roughly says that given a collection of pairwise

orthogonal rgiΛis P SΓ, the hyperbolic spaces CpgiΛiq give a coordinate system for GΓ.

We first prove that we can always represent n mutually orthogonal elements of SΓ by the

same group element, and similarly for nesting chains. This allows us to simplify arguments

involving three or more orthogonal domains by working within a fixed coset.

Proposition 4.2.16. Let rg1Λ1s, . . . , rgnΛns P SΓ. If either rg1Λ1s Ď . . . Ď rgnΛns or
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rg1Λ1s, . . . , rgnΛns are pairwise orthogonal, then there exists g P GΓ so that rgΛis “ rgiΛis

for all i P t1, . . . , nu.

Proof. We proceed by induction. The initial case n “ 2 is true by definition. Suppose the

statement is true for all n ă m, and consider n “ m, that is, we have rg1Λ1s, . . . , rgmΛms P SΓ

which are either pairwise orthogonal or nested. Then in particular rg1Λ1s, . . . , rgm´1Λm´1s are

pairwise orthogonal (respectively nested), hence there exists g P GΓ such that rgΛis “ rgiΛis

for all i ă m. Since rgΛis “ rgiΛis if and only if rΛis “ rg´1giΛis, we can assume g “ e

without loss of generality. Then rΛisKrgmΛms (respectively rΛis Ď rgmΛms) for each i ă m,

so for each i ă m there exists ki such that ki P xstpΛiqy and g´1
m ki P xstpΛmqy. Let h

be the shortest prefix of gm such that g´1
m h P xstpΛmqy. Since g´1

m ki P xstpΛmqy for each

i P t1, . . . ,m´ 1u, we know suppphq Ď supppkiq Ď stpΛiq for each i ă m. Hence rΛis “ rhΛis

for each i ă m and rgmΛms “ rhΛms. Thus, by induction the statement is true for all n.

Lemma 4.2.17 (Partial realisation). Let trgiΛisu
n
i“1 be a finite collection of pairwise orthog-

onal elements of SΓ. For each i P t1, . . . , nu, fix a choice of representative giΛi for rgiΛis

and let pi P CpgiΛiq. There exists x P GΓ so that:

• dgiΛipx, piq “ 0 for all i;

• for each i and each rhΩs P SΓ, if rgiΛis Ĺ rhΩs or rhΩs&rgiΛis, then for any choice of

representative hΩ P rhΩs we have dhΩpx, ρ
giΛi
hΩ q “ 0.

Proof. By Proposition 4.2.16 there exists some g P GΓ such that rgiΛis “ rgΛis for all i.

Define p1i “ ggΛippiq “ gλi, where λi P xΛiy, and let x “ gλ1λ2 . . . λn. Then πgΛipxq “

g ¨ prefixΛi
pg´1xq “ gλi “ πgΛippiq for each i, since orthogonality tells us the elements λi all

commute with each other and the subgraphs Λi are all disjoint. Therefore dgΛipx, piq “ 0 for

all i, and so by Lemma 4.1.8, we have dgiΛipx, piq “ 0 for all i.

Now, suppose rgΛis Ĺ rhΩs or rgΛis&rhΩs for some i P t1, . . . , nu and rhΩs P SΓ.

Since Λj Ď lkpΛiq Ď stpΛiq for each j ‰ i, we have x “ gλ1 . . . λn P gxstpΛiqy. Thus,
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πhΩpxq P πhΩ pgxstpΛiqyq “ ρgΛihΩ for any choice of representative hΩ of rhΩs. Moreover, we

have ρgΛihΩ “
Ť

kΛi‖gΛi πhΩ

`

kxΛiy
˘

“ ρgiΛihΩ , since giΛi ‖ gΛi. This implies dhΩpx, ρ
giΛi
hΩ q “ 0.

4.2.6 Consistency

Finally, we prove consistency, which says that given two transverse domains rgΛs and rhΩs

in SΓ, each element of GΓ projects uniformly close to one of the lateral relative projections

ρgΛhΩ and ρhΩ
gΛ .

Our proof shall proceed by contradiction. Assuming that each element of GΓ projects

far from both lateral projections, we can use Lemma 4.2.14 to show that rgΛs Ď rh lkpwqs

for each vertex w of Ω, which will imply rgΛsKrhws for each vertex w of Ω. We then

obtain rgΛsKrhΩs by adapting the proof of Proposition 4.2.16 to show that we may promote

orthogonality with multiple domains to orthogonality with their union. This contradicts

rgΛs&rhΩs.

Lemma 4.2.18. Let rgΛ1s, . . . , rgΛn´1s, rkΛns P SΓ. If rgΛisKrkΛns for all i ă n, then

rg
Ť

iăn ΛisKrkΛns.

Proof. Since rgΛisKrkΛns if and only if rΛisKrg
´1kΛns, we may assume that g “ e. By

orthogonality, for each i ă n there exists ki such that ki P xstpΛiqy and k´1ki P xstpΛnqy.

Following the proof of Proposition 4.2.16, let h be the shortest prefix of k such that k´1h P

xstpΛnqy. Then suppphq Ď supppkiq Ď stpΛiq for all i ă n, so h P xstpΛiqy for all i ă n.

Therefore h P x
Ş

iăn stpΛiqy Ď xstp
Ť

iăn Λiqy, hence r
Ť

iăn Λis “ rh
Ť

iăn Λis and rkΛns “

rhΛns. Moreover, by orthogonality, Λn Ď lkpΛiq for all i ă n, hence Λn Ď
Ş

iăn lkpΛiq “

lkp
Ť

iăn Λiq. We therefore have r
Ť

iăn ΛisKrkΛns.

Lemma 4.2.19 (Consistency). If rgΛs&rhΩs, then for all x P GΓ and for any choice of

representatives gΛ P rgΛs and hΩ P rhΩs we have

min
!

dhΩ

´

πhΩpxq, ρ
gΛ
hΩ

¯

, dgΛ
´

πgΛpxq, ρ
hΩ
gΛ

¯)

ď 2. (˚)
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Further, if rkΠs Ĺ rgΛs and either rgΛs Ĺ rhΩs or rgΛs&rhΩs and rhΩs M rkΠs, then

dhΩpρ
kΠ
hΩ, ρ

gΛ
hΩq “ 0.

Proof. We prove p˚q by contradiction. Suppose dhΩpπhΩpxq, ρ
gΛ
hΩq ą 2 and dgΛpπgΛpxq, ρhΩ

gΛq ą

2. Then we also have

dsylpghΩpxq, ghΩpgxΛyqq ą 2 and dsylpggΛpxq, ggΛphxΩyqq ą 2.

Thus ghΩpxq and ghΩpgxΛyq are separated by some hyperplane Hw labelled by a vertex w

of Ω. By Proposition 2.6.22(5), Hw also separates x and gxΛy. In particular, Hw crosses

any SpΓq–geodesic segment γ connecting x and gxΛy. Because of Proposition 2.6.22(4), Hw

cannot separate gxΛy and ghΩpgxΛyq as Hw crosses hxΩy. Thus, there exists a combinatorial

hyperplane ofHw contained in the same component of SpΓqrHw as both gxΛy and ghΩpgxΛyq.

Let H 1
w be this particular combinatorial hyperplane of Hw; see Figure 4.10.

x

gxΛy hxΩy

ggΛphxΩyq ghΩpgxΛyq

ggΛpxq ghΩpxq

γ

Hw
H 1
w

Figure 4.10: The combinatorial hyperplane H 1
w of Hw that is in the same component of

SpΓqrHw as both gxΛy and ghΩpgxΛyq.

We claim that diampπgΛpH
1
wqq ą 2. By construction, H 1

w contains both a vertex of hxΩy
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and a vertex of γ. Thus, πgΛpH 1
wq contains points from both πgΛphxΩyq and πgΛpγq. Since

ggΛpxq is the unique point in gxΛy that minimises the SpΓq–distance from x to gxΛy, we have

ggΛpγq “ ggΛpxq P πgΛpH
1
wq. Since dgΛpπgΛpxq, πgΛphxstpΩqyqq “ dgΛpπgΛpxq, ρhΩ

gΛq ą 2, and

πgΛpH
1
wqmust contain points from both πgΛpxq and πgΛphxΩyq, we must have diampπgΛpH

1
wqq ą

2.

By Remark 2.6.19, we have H 1
w Ď hxlkpwqy. Thus, diampπgΛpH

1
wqq ą 2 implies that

diampπgΛphxlkpwqyqq ą 2. Lemma 4.2.14 then forces rgΛs Ď rh lkpwqs Ď rh stpwqs. This

implies Λ Ď lkpwq and that there exists k P GΓ such that rkΛs “ rgΛs and rk stpwqs “

rh stpwqs. Since stpstpwqq “ stpwq, rk stpwqs “ rh stpwqs implies rkws “ rhws. Thus rgΛs “

rkΛs K rkws “ rhws. Moreover, since dhΩpπhΩpxq, ρ
gΛ
hΩq ą 2, every vertex of Ω must appear

as an edge label for the SphΩq–geodesic connecting ghΩpxq and ghΩpgxΛyq. Therefore such a

hyperplane Hw exists for every vertex w of Ω, and so rgΛs K rhws for all w P V pΩq. Lemma

4.2.18 then tells us rgΛs K rhΩs, contradicting transversality. Hence inequality (˚) must

hold.

Now suppose rkΠs Ĺ rgΛs and either rgΛs Ĺ rhΩs or rgΛs&rhΩs and rhΩsMrkΠs. Then

there exists some element a such that rkΠs “ raΠs, rgΛs “ raΛs. Therefore πhΩpaxΠyq Ď ρkΠ
hΩ

and πhΩpaxΛyq Ď ρgΛhΩ. But axΠy Ď axΛy, so dhΩpρ
kΠ
hΩ, ρ

gΛ
hΩq “ 0.

4.2.7 Compatibility of the group structure

The results so far show that a graph product GΓ can be given the structure of a relatively

hierarchically hyperbolic space. It remains to show that this structure agrees with the group

structure of GΓ.

Lemma 4.2.20. The map φ : GΓ ˆSΓ Ñ SΓ where φpa, rgΛsq “ ragΛs defines a Ď–, K–,

and &–preserving action of GΓ on SΓ by bijections such that SΓ contains finitely many

GΓ–orbits.

Proof. Let φa “ φpa, ¨q. This is well-defined, since rgΛs “ rkΛs if and only if ragΛs “ rakΛs.
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Further, since φa does not alter the subgraph Λ, it preserves the orthogonality, nesting, and

transversality relations. Each φa is also a bijection: if ragΛs “ rahΩs, then Λ “ Ω and

pagq´1pahq “ g´1h P xstpΛqy, hence rgΛs “ rhΩs, proving injectivity. Surjectivity holds since

we can always write rgΛs “ φapra
´1gΛsq. Finally, there are finitely many GΓ–orbits; one for

each subgraph Λ Ď Γ.

Lemma 4.2.21. For each subgraph Λ Ď Γ and elements a, g P GΓ, there exists an isometry

agΛ : CpgΛq Ñ CpagΛq satisfying the following for all subgraphs Λ,Ω Ď Γ and elements

a, b, g, h P GΓ.

• The map pabqgΛ : CpgΛq Ñ CpabgΛq is equal to the map abgΛ ˝ bgΛ : CpgΛq Ñ CpabgΛq.

• For each x P GΓ, we have agΛpπgΛpxqq “ πagΛpaxq.

• If rhΩs&rgΛs or rhΩs Ĺ rgΛs, then agΛpρhΩ
gΛq “ ρahΩ

agΛ .

Proof. Let the isometry agΛ be left-multiplication by a, that is for any gx P CpgΛq, let

agΛpgxq “ agx. Then:

• The equality pabqgΛ “ abgΛ ˝ bgΛ is immediate from our definition.

• We have agΛpπgΛpxqq “ πagΛpaxq by Proposition 2.6.22(2).

• The final property follows as an immediate consequence of the previous one and the

definition of the relative projections.

4.2.8 Graph products are relative HHGs

We now compile the results from Section 4.2 to obtain the main result of this chapter, that

any graph product of finitely generated groups is a relative HHG.

Theorem 4.2.22. Let GΓ be a graph product of finitely generated groups. The proto-

hierarchy structure SΓ from Theorem 4.1.23 is a relatively hierarchically hyperbolic group

structure for GΓ with hierarchy constant maxt18, |V pΓq|u.
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Proof. Let SΓ be the proto-hierarchy structure for pGΓ, dq from Theorem 4.1.23. The work

of this section has shown that SΓ is a relative HHS structure for pGΓ, dq.

(1) We proved that the spaces associated to the non-Ď–minimal domains of SΓ are 7
2
–

hyperbolic in Lemma 4.2.1.

(2) We proved finite complexity in Lemma 4.2.5.

(3) We proved the container axiom in Lemma 4.2.6.

(4) The proof of the uniqueness axiom follows from Lemma 4.2.7, since if dCprgΛsqpx, yq is

uniformly bounded for all rgΛs P SΓ, then Lemma 4.1.8 implies that dgΛpx, yq has the

same uniform bound for all g P GΓ and Λ Ď Γ.

(5) We proved the bounded geodesic image axiom in Lemma 4.2.12.

(6) We proved the large links axiom in Lemma 4.2.15.

(7) We proved the consistency axiom in Lemma 4.2.19.

(8) We proved the partial realisation axiom in Lemma 4.2.17.

We now verify the remaining axioms required for pGΓ, dq to be a relative HHG, as laid

out in Definition 2.7.3.

Let φ : GΓ ˆSΓ Ñ SΓ be the map φpa, rgΛsq “ ragΛs. By Lemma 4.2.20, this is a well-

defined GΓ–action by bijections that preserves the nesting, orthogonality, and transversality

relations and has finitely many orbits. We will use a ¨ rgΛs to denote φpa, rgΛsq “ ragΛs.

For each rgΛs P SΓ, let gΛ denote the fixed representative of rgΛs such that CprgΛsq “

CpgΛq; see the proto-hierarchy structure in Theorem 4.1.23. Left multiplication by a P GΓ

gives an isometry agΛ : CpgΛq Ñ CpagΛq for each g P GΓ and each subgraph Λ Ď Γ. For

each a P GΓ and rgΛs P SΓ, define argΛs : CpgΛq Ñ CpagΛq by argΛs “ gagΛ ˝ agΛ.
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Let a, b P GΓ and rgΛs, rhΩs P SΓ. We now verify the remaining axioms of a relatively

hierarchically hyperbolic group (Definition 2.7.3).

• Let λ P xΛy. To show pabqrgΛs “ arbgΛs ˝ brgΛs we will show

pabqrgΛspgλq “ parbgΛs ˝ brgΛsqpgλq.

Using the last clause of Lemma 4.1.8, we have

pabqrgΛspgλq “ gabgΛpabgλq “ abg ¨ pabλ

where pab “ prefixΛppabgq
´1 ¨ abgq. Similarly, we have

parbgΛs ˝ brgΛsqpgλq “ arbgΛspbg ¨ pbλq “ abg ¨ papbλ

where pb “ prefixΛ

`

pbgq´1 ¨ bg
˘

and pa “ prefixΛ

`

pabgq´1 ¨ abg
˘

. Thus, it suffices to

prove papb “ pab.

Since bg and bg are both representatives of the parallelism class rbgΛs, we have pbgq´1 ¨

bg P xstpΛqy. Therefore pbgq´1 ¨ bg “ pblb where lb P xlkpΛqy. Similarly, pabgq´1 ¨ abg “

pala where la P xlkpΛqy. Hence the following calculation concludes our argument:

pabgq´1
¨ abg “pabgq´1

¨ abg ¨ pblb

prefixΛ

`

pabgq´1
¨ abg

˘

“ prefixΛ

`

pabgq´1
¨ abg ¨ pblb

˘

pab “ prefixΛppalapblbq

pab “papb.

• Let x P GΓ. Since agΛ ‖ agΛ, we can use Lemma 4.1.8 and equivariance of the gate
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map (Proposition 2.6.22(2)) to conclude:

gagΛ pgagΛpaxqq “gagΛpaxq

gagΛ pa ¨ ggΛpxqq “gagΛpaxq

pgagΛ ˝ agΛq ppπgΛpxqq “πagΛpaxq

argΛs
`

πrgΛspxq
˘

“πragΛspaxq.

• Suppose rhΩs&rgΛs or rhΩs Ĺ rgΛs. Lemmas 4.1.8, 4.2.20, and 4.2.21 imply argΛs
´

ρ
rhΩs
rgΛs

¯

“

ρ
rahΩs
ragΛs :

argΛs

´

ρ
rhΩs
rgΛs

¯

“pgagΛ ˝ agΛq
´

ρhΩ
gΛ

¯

(Definition of argΛsq

“gagΛ

´

ρahΩ
agΛ

¯

(Lemma 4.2.21)

“gagΛ
`

gagΛpahxstpΩqyq
˘

(Definition of ρq

“gagΛpahxstpΩqyq (Lemma 4.1.8)

“gagΛpahxstpΩqyq pahΩ ‖ ahΩq

“ρahΩ
agΛ .

Behrstock, Hagen, and Sisto show that any relatively hierarchically hyperbolic space has

a distance formula, which expresses distances in the space as a sum of distances in the

projections [BHS19, Theorem 6.10]. As a result, we now have such a distance formula for

graph products of finitely generated groups.

Corollary 4.2.23 (Distance formula for graph products). Let GΓ be a graph product of

finitely generated groups. There exists σ0 ą 0 such that for all σ ě σ0 there exist K ě 1 and
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L ě 0 such that for all g, h P GΓ

1

K

ÿ

rkΛsPSΓ

  

drkΛspg, hq
((

σ
´ L ď dpg, hq ď K

ÿ

rkΛsPSΓ

  

drkΛspg, hq
((

σ
` L

where we define ttNuuσ “ N if N ě σ and 0 if N ă σ.

Another key consequence of relative hierarchical hyperbolicity for a group is that the

action of the group on the Ď–maximal space is acylindrical. Thus, we have that the action

of GΓ on CpΓq is acylindrical.

Corollary 4.2.24 (The action on CpΓq is acylindrical). Let GΓ be a graph product of finitely

generated groups. The action of GΓ on CpΓq by left multiplication is acylindrical.

Proof. Behrstock, Hagen, and Sisto proved that if pG,Sq is a (non-relative) hierarchically

hyperbolic group and T P S is the Ď–maximal element, then the action of G on CpT q is

acylindrical [BHS17b, Theorem 14.3]. However, the argument they employ only uses the

hyperbolicity of the space CpT q and not the hyperbolicity of any of the other spaces in the

HHG structure. Thus, their argument carries through verbatim if pG,Sq is a relative HHG

provided S ‰ tT u. In the case when S “ tT u, then CpT q is equivariantly quasi-isometric

to a Cayley graph of G with respect to some finite generating set. Thus, G acts on CpT q

properly, and hence acylindrically. Applying this to the graph product GΓ with relative HHG

structure SΓ, we have that GΓ acts on CpΓq acylindrically.

4.2.9 The syllable metric is an HHS

Since nearly every argument used in the proof of Theorem 4.2.22 factors through the syllable

metric on the graph product GΓ, the same arguments show that the syllable metric on GΓ is

itself a hierarchically hyperbolic space. This proves Corollary B stated in the introduction

and answers a question of Behrstock, Hagen, and Sisto about the syllable metric on a right-

angled Artin group. Note that since we are not working with a word metric on GΓ in this
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situation, we do not require the vertex groups to be finitely generated. As the only use of

the finite generation of the vertex groups in Theorem 4.2.22 is to ensure that GΓ has a word

metric, this does not create any additional difficulty.

Corollary 4.2.25. Let Γ be a finite simplicial graph, with each vertex v labelled by a non-

trivial group Gv. Then the graph product GΓ endowed with the syllable metric is a hierarchi-

cally hyperbolic space.

Proof. Define the proto-hierarchy structure for GΓ as before, except whenever v P V pΓq and

g P GΓ, define Cpgvq to be the graph whose vertices are elements of gGv and where every

pair of vertices is joined by an edge (that is, we endow gGv with the syllable metric rather

than the word metric). The proofs of the HHG axioms then follow as before, with any

instance of ‘word metric’ replaced with ‘syllable metric’, and with trivial Ď–minimal case

for the majority of axioms due to such Cpgvq having diameter 1.

4.3 Some applications of hierarchical hyperbolicity

We now give some applications of the relative hierarchical hyperbolicity of graph products.

Our main result of this section is Theorem 4.3.1, which uses our results from Chapter 3

to show that if the vertex groups of a graph product GΓ are HHGs, then GΓ is itself a

(non-relative) HHG.

We then give a new proof of a theorem of Meier, classifying when a graph product GΓ with

hyperbolic vertex groups is itself hyperbolic. We do this using the relative HHS structure

that we just obtained, noting that when the vertex groups are hyperbolic, this is in fact a

(non-relative) HHS structure.

Finally, we answer two questions of Genevois regarding the electrification EpΓq of a

graph product GΓ of finite groups [Gen19b, Questions 8.3, 8.4]. The similarity of Genevois’

definition of EpΓq to our own subgraph metric CpΓq allows us to leverage properties of CpΓq
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to prove statements about EpΓq. In particular, we use Γ to classify when EpΓq has bounded

diameter (Theorem 4.3.10) and when it is a quasi-line (Theorem 4.3.12). As Genevois proved

that any quasi-isometry between graph products of finite groups induces a quasi-isometry

between their electrifications [Gen19b, Proposition 1.4], these two theorems provide us with

tools for studying quasi-isometric rigidity of graph products of finite groups.

4.3.1 Graph products of HHGs

Theorem 4.3.1. Let GΓ be a graph product of finitely generated groups. If for each v P V pΓq,

the vertex group Gv is a hierarchically hyperbolic group, then GΓ is a hierarchically hyperbolic

group.

Proof. For each v P V pΓq, let Rrvs be the HHG structure for Gv and let SΓ be the relative

HHG structure for GΓ coming from Theorem 4.2.22. Fix E0 ą 0 to be the maximum of

the hierarchy constants for SΓ and for each Rrvs. For each rgΛs P SΓ, let gΛ be the fixed

representative of rgΛs so that CprgΛsq “ CpgΛq. If rgΛs “ rΛs, then we choose g “ e.

Let Smin
Γ “ trgΛs P SΓ : Λ is a single vertex of Γu. If Λ is a single vertex v of Γ, then

Cprvsq is the Cayley graph of the vertex group Gv with respect to a finite generating set.

Thus, Rrvs is an HHG structure for Cprvsq. For each rgvs P Smin
Γ , Rrvs is also an E0–HHS

structure for Cprgvsq, since Cprgvsq is isometric to Cprvsq. LetRrgvs denote the HHS structure

for Cprgvsq induced by Rrvs. If U P Rrvs, then we will denote the corresponding element of

Rrgvs by gU where g is the chosen fixed representative of rgvs. Let R “
Ť

rgvsPSminΓ
Rrgvs,

then let T0 “ pSΓ rSmin
Γ q YR.

We shall use ĎS, KS, and &S to denote the nesting, orthogonality, and transversality

relations between elements of SΓ, and ĎR, KR, and &R to denote the relations between

elements of a fixed Rrgvs.

The bulk of our proof of Theorem 4.3.1 does not use the specifics of the relative HHG

structure SΓ and instead relies on more general relative HHS properties. Thus, to simplify
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notation, we will use the capital letters V or V 1 to denote elements of Smin
Γ and use RV or

RV 1 to denote the corresponding HHS structure on CpV q or CpV 1q. That is, if V “ rgvs for

a vertex v P V pΓq, then RV “ Rrgvs. We will use the capital letters U , W , and Q to denote

elements of T0. For U,W P SΓ rSmin
Γ or U,W P RV we shall denote the relative projection

from U to W in SΓ or RV as ρUW . We shall use πW to denote the projection GΓ Ñ 2CpW q if

W P SΓ and πVW to denote the projection CpV q Ñ 2CpW q if W P RV .

Our proof of Theorem 4.3.1 proceeds via four claims. First we prove that the structure

SΓ can be combined with all of the RV structures in a natural way to produce a proto-

hierarchy structure for GΓ with index set T0 (Claim 4.3.2). This proto-hierarchy structure

is not quite a hierarchically hyperbolic space structure, as it satisfies every axiom except

the container axiom (Claim 4.3.3). However, we show that this proto-hierarchy structure

has the property that any set of pairwise orthogonal elements of T0 has uniformly bounded

cardinality (Claim 4.3.4). This allows us to use the results of Chapter 3 to upgrade T0 to a

genuine HHS structure T. Since the proto-structure will satisfy the equivariance properties

of a hierarchically hyperbolic group structure for GΓ (Claim 4.3.5), this HHS structure will

also be a hierarchically hyperbolic group structure.

Claim 4.3.2. GΓ admits an E1–proto-hierarchy structure with index set T0, where E1 “

E2
0 ` E0.

Proof. For U P T0, the associated hyperbolic space CpUq will be the same as the space

associated to U in either SΓ or R.

Projections: For all W P T0, the projection map will be denoted ψW : GΓ Ñ 2CpW q.

If W P SΓ r Smin
Γ , then ψW “ πW and if W P RV , then ψW “ πVW ˝ πV . Each ψW is

pE2
0 , E

2
0 ` E0q–coarsely Lipschitz.

Nesting: Let W,U P T0. We define U Ď W if one of the following holds:

• W,U P SΓ rSmin
Γ and U ĎS W ;
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• W,U P RV and U ĎR W ;

• W P SΓ rSmin
Γ and U P RV with V ĎS W .

This definition makes rΓs, the ĎS–maximal element of SΓ, also the Ď–maximal element

of T0. For U,W P T0 with U Ĺ W we denote the relative projection from U to W by βUW

and define it as follows.

• If W,U P SΓ rSmin
Γ and U ĎS W or W,U P RV and U ĎR W , then βUW is ρUW , the

relative projection from U to W in SΓ or RV respectively.

• If W P SΓ rSmin
Γ and U P RV with V ĎS W , then βUW is ρVW ,the relative projection

from V to W in SΓ.

The diameter of βUW is bounded by E0 in all cases as it is always coincides with a relative

projection (ρUW or ρVW ) from an existing hierarchy structure with constant E0.

Orthogonality: Let W,U P T0. We define U K W if one of the following holds:

• W,U P SΓ rSmin
Γ and U KS W ;

• W,U P RV and U KR W ;

• W P SΓ rSmin
Γ and U P RV with V KS W ;

• W P RV 1 and U P RV where V KS V
1.

Transversality: Let U,W P T0. We define U&W whenever they are not orthogonal or

nested in T0. This arises in three different situations, which determine the definition of the

relative projections βWU and βUW .

• Either U,W P SΓ or U,W P RV and U&SW or U&RW respectively. In this case, βUW

is ρUW , the relative projection from U to W in SΓ or RV respectively, and βWU is ρWU .
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• W P SΓ and U P RV where W&SV . In this case, βUW is ρVW , the relative projection

from V to W in SΓ, and βWU “ πVU pρ
W
V q.

• W P RV 1 and U P RV where V&SV
1. In this case, βUW “ πV

1

W pρ
V
V 1q and βWU “ πVU pρ

V 1

V q.

The projection and transversality axioms of RV and SΓ ensure that βUW has diameter at

most E2
0 ` E0 in all cases.

Claim 4.3.3. T0 satisfies all of the axioms of a hierarchically hyperbolic space except for

the container axiom.

Proof. Recall, E1 ą 0 is the hierarchy constant from the proto-hierarchy structure T0. Note

E1 is larger than E0, which in turn is larger than the hierarchy constants for SΓ and each

RV .

Hyperbolicity: For all W P T0, the space CpW q is E1–hyperbolic.

Uniqueness: Let κ ě 0 and θ : r0,8q Ñ r0,8q be the maximum of the uniqueness

functions for SΓ and each RV . If x, y P GΓ and dpx, yq ě θpθpκq ` κq, then there exists

W P SΓ such that dW px, yq ě θpκq ` κ by the uniqueness axiom in pGΓ,SΓq. If W R Smin
Γ ,

then W is in T0 and the uniqueness axiom is satisfied. If W P Smin
Γ , then the uniqueness

axiom in pCpW q,RW q provides U P RW so that dUpx, yq ě κ. The uniqueness function for

pGΓ,T0q is therefore φpκq “ θpθpκq ` κq.

Finite complexity: The length of a Ď–chain in T0 is at most 2E1.

Bounded geodesic image: Let x, y P GΓ and U,W P T0 with U Ĺ W . If U,W P SΓ or

U,W P RV , then the bounded geodesic image axiom from pGΓ,SΓq or pCpV q,RV q implies

the bounded geodesic image axiom for pGΓ,T0q. Suppose, therefore, that U P RV and

W P SΓ rSmin
Γ . By definition, V ĎS W and βUW coincides with ρVW , the relative projection

of V to W in SΓ. If dUpx, yq ą E2
1 ` E1, then we have

E2
1 ` E1 ă dUpx, yq “ dUpπVU pπV pxqq, π

V
U pπV pyqqq ď E1dV pπV pxq, πV pyqq ` E1,
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which implies E1 ă dV pπV pxq, πV pyqq. Now, the bounded geodesic image axiom in pGΓ,SΓq

says every geodesic in CpW q from ψW pxq “ πW pxq to ψW pyq “ πW pyq must pass through

the E1–neighbourhood of ρVW “ βUW . Thus, the bounded geodesic image axiom is satisfied

for pGΓ,T0q.

Large links: Let W P T0 and x, y P GΓ. If W P RV for some V P Smin
Γ , then all

elements of T0 that are nested into W are also elements of RV . Thus, the large links axiom

in pCpV q,RV q immediately implies the large links axiom for pGΓ,T0q.

Assume W P SΓ r Smin
Γ . The large links axiom for pGΓ,SΓq gives a collection L “

tU1, . . . , Umu of elements of SΓ nested intoW such that m is at most E1dW pπW pxq, πW pyqq`

E1, and for all V P SW , either V ĎS Ui for some i or dV pπV pxq, πV pyqq ă E1. For each

i P t1, . . . ,mu, define Ui to be the ĎR–maximal element of RUi if Ui P Smin
Γ and define U i

to be Ui if Ui R Smin
Γ . Let L “ tU1, . . . , Umu.

If V P Smin
Γ is nested intoW , but is not nested into an element of L, then dV pπV pxq, πV pyqq ă

E1 and so

dQpψQpxq, ψQpyqq ă E2
1 ` E1

for all Q P RV . Thus, if dQpψQpxq, ψQpyqq ě E2
1 ` E1 and Q is nested into W , then either

Q P S rSmin
Γ or Q P RV where V is nested into an element of L (and so Q is nested into

an element of L). If Q P SΓ rSmin
Γ , then Q must be nested into an element of L that is not

in Smin
Γ by the large links axiom of pGΓ,SΓq, and hence must be nested into an element of

L. Thus, Q Ď W is nested into an element of L whenever dQpψQpxq, ψQpyqq ě E2
1 ` E1.

Consistency: Let U,W P T0 with U&W and x P GΓ. Since the relative projections are

inherited from SΓ and the RV , we only need to consider the case where either W P SΓ and

U P RV , or W P RV 1 and U P RV with V 1 ‰ V . Define Q “ W if W P SΓ and Q “ V 1 if

W P RV 1 . In either case Q&SV .

First assumeQ “ W so that βUW “ ρVQ and βWU “ πVU pρ
Q
V q. If dW px, β

U
W q “ dQpx, ρVQq ą E1,

then the consistency axiom for pGΓ,SΓq says dV px, ρ
Q
V q ď E1. The coarse Lipschitzness of
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the projections then implies dUpx, πVU pρ
Q
V qq “ dUpx, βWU q ď E2

1 ` E1.

Now assume Q “ V 1 so that βUW “ πQW pρ
V
Qq and βWU “ πVU pρ

Q
V q. If dW px, βUW q ą E2

1 ` E1,

then dQpx, ρVQq ą E1. The consistency axiom for pGΓ,SΓq then says dV px, ρ
Q
V q ď E1 and we

again have dUpx, βWU q “ dV px, πVU pρ
Q
V qq ď E2

1 ` E1.

For the last clause of the consistency axiom, let Q,U,W P T0 with Q Ĺ U . If U Ĺ W , the

definition of nesting and relative projection in T0 and the consistency axioms in pGΓ,SΓq

and the pCpV q,RV q ensure that dW pβ
Q
W , β

U
W q ď E2

1 ` E1. Similarly, if W P SΓ with W&U

and W M Q, then dW pβ
Q
W , β

U
W q ď E2

1 ` E1. Assume W P RV for some V P Smin
Γ , W&U ,

and W M Q. If U,Q P RV 1 , then V 1&SV and βUW “ βQW . If U,Q P SΓ, then U&SV and

Q&SV . Thus, the consistency axiom for pGΓ,SΓq provides dV pρUV , ρ
Q
V q ď E1. Similarly, if

U P SΓ and Q P RV 1 , then U&SV , V 1&SV , and dV pρUV , ρ
V 1

V q ď E1. Hence in both cases

dW pβUW , β
Q
W q ď E2

1 ` E1.

Partial realisation: Let W1, . . . ,Wn be pairwise orthogonal elements of T0 and pi P

CpWiq for each i P t1, . . . , nu. Since pGΓ,SΓq satisfies the partial realisation axiom, we can

assume at least oneWi is not an element ofSΓ. There exist V1, . . . , Vr P S
min
Γ so that for each

i P t1, . . . , nu, either Wi P SΓ or there exists a unique j P t1, . . . , ru such that Wi P RVj .

For each j P t1, . . . , ru, let tW j
1 , . . . ,W

j
kj
u be the elements of tW1, . . . ,Wnu that are also

elements of RVj and let tpj1, . . . , p
j
kj
u be the subset of tp1, . . . , pnu satisfying pji P CpW

j
i q for

all j P t1, . . . , ru and i P t1, . . . , kju. Using partial realisation for each of the pCpVjq,RVjq on

the points pj1, . . . , p
j
kj

produces a set of points y1, . . . yr so that for each j P t1, . . . , ru:

• yj P CpVjq;

• dW j
i
pyj, p

j
i q ď E1 for all i P t1, . . . , kju;

• for each i P t1, . . . , kju and each U P RVj , if W
j
i Ĺ U or W i

j&U , we have dUpyj, ρ
W j
i

U q ď

E1.

Assume, without loss of generality, that Wm,Wm`1, . . . ,Wn are all of the Wi that are not
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contained in any of the RVj (it is possible the set of suchWi is empty). Now, applying partial

realisation for pGΓ,SΓq to y1, . . . , yr, pm, . . . , pn produces a point x P GΓ so that ψWi
pxq is

uniformly close to pi for each i P t1, . . . , nu and ψUpxq is uniformly close to βWi
U whenever

Wi Ĺ U or U&Wi, for any U P T0. Note, if the set of Wi that are not elements of any of the

RVj is empty, then the above applies just to y1, . . . , yr, but the conclusion still holds.

Claim 4.3.4. The E1–proto-hierarchy structure T0 has the following property: ifW1, . . . ,Wn P

T0 are pairwise orthogonal, then n ď E2
1 ` E1.

Proof. LetW1, . . . ,Wn P T0 be pairwise orthogonal. Without loss of generality, letW1, . . .Wk

be the elements of tW1, . . . ,Wnu that are elements of SΓ. Since W1, . . . ,Wk is a pairwise

orthogonal collection of elements of SΓ, Lemma 2.7.18 says k ď E1.

Let V1, . . . , Vm be the minimal collection of elements of Smin
Γ such that if i P tk`1, . . . , nu

(i.e. Wi R SΓ), then Wi P RVj for some j P t1, . . . ,mu. Minimality implies that for each

j P t1, . . . ,mu, there exists i P tk ` 1, . . . , nu such that Wi P RVj . Suppose Wi P RVj and

W` P RVr with j ‰ r. Since Wi K W` in T0, then definition of orthogonality in T0 implies

that Vj KS Vr. Thus, V1, . . . , Vm is a pairwise orthogonal collection of elements of SΓ and

m ď E1 by Lemma 2.7.18. Similarly, for each j P t1, . . . ,mu the set tWi : Wi P RVju is

a pairwise orthogonal collection of elements of RVj and must have cardinality at most E1.

Putting this together, we have that n ď k ` E1m ď E1 ` E
2
1 .

Claim 4.3.5. The action of GΓ on SΓ induces an action of GΓ on T0 that satisfies axioms

(2) and (3) of the definition of a hierarchically hyperbolic group (Definition 2.7.3).

Proof. The action of GΓ on T0: Let σ P GΓ and W P T0. Define Φ: G ˆ T0 Ñ T0 as

follows.

• If W “ rgΛs P SΓ rSmin
Γ , then Φpσ, rgΛsq “ rσgΛs, i.e., the action is the same as the

action of GΓ on SΓ.
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• If W “ gR P Rrgvs for some rgvs P Smin
Γ , then pσgq´1σg P StabGΓ

prvsq, where σg is

the chosen fixed representative of rσgvs “ rσgvs. Since StabGΓ
prvsq “ xstpvqy, there

exists l P xlkpvqy and σ̂ P xvy such that lσ̂ “ pσgq´1σg. Because Rrvs is an HHG

structure for xvy “ Gv there exists Rσ “ σ̂R P Rrvs determined by σ and gR. Define

Φpσ, gRq “ σgRσ P Rrσgvs. The following commutative diagram summarises how σ

takes elements of Rrgvs to elements of Rrσgvs.

Rrgvs Rrσgvs

Rrvs

g´1

σ

σg

σ̂

We now verify that Φ preserves the relations in T0. Let W,U P T0. If W,U P SΓ rSmin
Γ

or W,U P Rrgvs for some rgvs P Smin
Γ , then Φ preserves the relation between W and U , since

the actions of GΓ on SΓ and Gv “ xvy on Rrvs preserve the relations in their respective

hierarchy structures. If W P SΓ r Smin
Γ and U P Rrgvs, then W “ rhΩs and the relation

between W and U in T0 is the same as the relation between rhΩs and rgvs in SΓ. Thus, Φ

preserves the relation between W and U , since the action of GΓ preserves the relations in

SΓ. Similarly, the same is true in the case where W P Rrgvs and U P Rrhws for rgvs ‰ rhws

as the relation between W and U in T0 is the same as the relation between rgvs and rhws in

SΓ.

The definition of Φ implies that gR P Rrgvs is in the GΓ–orbit of hR1 P Rrhws if and only

if v “ w and R is in the Gv–orbit of R1. Thus, the action of GΓ on T0 has finitely many

orbits since the actions of GΓ on SΓ and Gv on Rrvs contain finitely many orbits.

For the remainder of the proof we shall use σW to denote Φpσ,W q for all W P T0. This

does not conflict with previous use of the notation as the action of GΓ on T0 agrees with

the action of GΓ on SΓ or the action of Gv on Rrvs, when W P SΓ or σ P xvy and W P Rrvs

respectively.

Associated isometries and equivariance with the projection maps: Let σ, τ P GΓ
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andW P T0. Since the action of GΓ on T0 agrees with the action of GΓ onSΓ for the elements

of T0 in SΓ, we can define the isometry σrgΛs : CprgΛsq Ñ CprσgΛsq to be the same as the

original isometry in pGΓ,SΓq; this guarantees the HHG axioms are satisfied in this case.

If W P Rrgvs, then W “ gR for some R P Rrvs. Now σW “ σgRσ, where Rσ is defined as

above. In this case, define the isometry σW : CpW q Ñ CpσW q to be the composition

CpW q
pgRq

´1

ÝÝÝÝÑ CpRq
σ̂R
ÝÑ CpRσq

σgRσ
ÝÝÝÑ CpσW q

where σ̂R : CpRq Ñ CpRσq is the isometry in Rrvs induced by σ̂ P Gv, and gR and σgRσ are

the isometries resulting from identifying Rrvs with Rrgvs and Rrσgvs respectively.

Now, if τ P GΓ, then pGv,Rrvsq being an HHG implies τ̂Rσ ˝ σ̂R “ xτσR. Thus the isometry

pτσqW equals the isometry τσW ˝ σW for any W P T0. We continue to use the notation set

out before Claim 4.3.2: ψ˚ and β˚˚ denote the projections and relative projections in T0,

while π˚˚ and ρ˚˚ denote the projections and relative projections in SΓ and Rrgvs. Since the

projection map ψW : GΓ Ñ 2CpW q is equal to πrgvsW ˝ πrgvs, the uniform bound on the distance

between ψσW pσxq and σW pψW pxqq follows from the HHG axioms of pGΓ,SΓq and pGv,Rrvsq.

Similarly, since the relative projection βUW (where U Ĺ W or U&W in T0) is defined using

the coarsely equivariant projections and relative projections of SΓ and Rrvs, we have that

σW pβ
U
W q is uniformly close to βσUσW whenever U Ĺ W or U&W .

We now conclude the proof of Theorem 4.3.1 by noting that Claims 4.3.3, 4.3.4, and 4.3.5

show that the proto-hierarchy structure T0 defines an almost HHG structure on GΓ. Thus,

there exists an HHG structure T for GΓ by Theorem 3.0.1 and Remark 3.0.6.

4.3.2 Meier’s condition for hyperbolicity

We now recover a theorem of Meier classifying hyperbolicity of graph products. We do this

by applying Behrstock, Hagen and Sisto’s bounded orthogonality condition for hierarchically
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hyperbolic spaces (Theorem 2.7.12).

Theorem 4.3.6 (Meier’s criterion for hyperbolicity of graph products; [Mei96]). Let Γ be a

finite simplicial graph with hyperbolic groups associated to its vertices. Let ΓF be the induced

subgraph spanned by the vertices associated with finite groups. Then GΓ is hyperbolic if and

only if the following conditions hold.

(i) There are no edges connecting two vertices of Γ r ΓF .

(ii) If v is a vertex of Γ r ΓF then lkpvq is a complete graph.

(iii) ΓF does not contain any induced squares.

Proof. We show hyperbolicity via the bounded orthogonality condition of Theorem 2.7.12,

noting that since each of the vertex groups is hyperbolic, the graph product GΓ is an HHS.

We call the vertices of ΓF the finite vertices of Γ and the vertices of Γ r ΓF the infinite

vertices of Γ.

(ñ) Suppose we have bounded orthogonality. Then:

(i) Suppose two infinite vertices v, w are connected by an edge. Then rvsKrws and Cpvq, Cpwq

have infinite diameter as they are the infinite groups Gv, Gw with the word metric. This

contradicts bounded orthogonality.

(ii) Suppose lkpvq is incomplete for some vertex v of Γ r ΓF . Then there exist some

vertices x, y in lkpvq with no edge between them. Moreover, rvsKrx Y ys, Cpvq has

infinite diameter as v is an infinite vertex, and Cpx Y yq has infinite diameter since

dxYype, pgxgyqnq “ 2n for elements gx P Gx r t1u, gy P Gy r t1u. This again contradicts

bounded orthogonality.

(iii) Suppose ΓF contains a square with vertices v, x, w, y, where v, w and x, y are non-

adjacent. Then rvYwsKrxYys and both CpvYwq and CpxYyq have infinite diameter

as in case (ii). Once again, this contradicts bounded orthogonality.
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(ð) Conversely, suppose conditions (i)–(iii) hold and let D “ maxt2, |Gv| : v P ΓF u.

Moreover, suppose rgΛs, rhΩs P S satisfy rgΛsKrhΩs.

Suppose diampCpgΛqq ą D. Then Theorem 4.2.10 tells us that either Λ consists of a

single infinite vertex or Λ contains at least 2 vertices and does not split as a join.

If Λ consists of a single infinite vertex, then conditions (i) and (ii) tell us that lkpΛq Ě Ω

is a complete graph consisting of finite vertices, hence either Ω is a single finite vertex or Ω

splits as a join. In both cases, diampCphΩqq ď D.

If Λ contains at least 2 vertices and does not split as a join, then in particular it contains

two non-adjacent vertices v and w. As Ω Ď lkpΛq, every vertex of Ω is connected to both

v and w. Condition (iii) implies that every pair of vertices of Ω must be connected by an

edge, and condition (i) then implies that Ω Ď ΓF . That is, Ω either consists of a single finite

vertex or splits as a join. In both cases, diampCphΩqq ď D. Thus the bounded orthogonality

condition holds.

4.3.3 Genevois’ minsquare electrification.

We now use our characterisation of when CpgΛq has infinite diameter (Theorem 4.2.10) to

answer two questions of Genevois [Gen19b, Questions 8.3, 8.4] regarding the electrification

of GΓ, defined as follows.

Definition 4.3.7. Let Γ be a simplicial graph. An induced subgraph Λ Ď Γ is called square-

complete if every induced square in Γ sharing two non-adjacent vertices with Λ is a subgraph

of Λ. A subgraph is minsquare if it is a minimal square-complete subgraph containing at

least one induced square.

The electrification EpΓq of a graph product GΓ is the graph whose vertices are elements

of GΓ and where two vertices g and h are joined by an edge if g´1h is an element of a vertex

group or g´1h P xΛy for some minsquare subgraph Λ of Γ. We use dEpg, hq to denote the

distance in EpΓq between g, h P GΓ.
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Genevois’ interest in the electrification arises from the fact that it forms a quasi-isometry

invariant whenever the vertex groups of a graph product are all finite, as is the case for

right-angled Coxeter groups.

Theorem 4.3.8 ([Gen19b, Proposition 1.4]). Let GΓ and GΛ be graph products of finite

groups. Any quasi-isometry GΓ Ñ GΛ induces a quasi-isometry between EpΓq and EpΛq.

For graph products of finite groups, we classify when EpΓq has bounded diameter and

when EpΓq is a quasi-line. These classifications answer Questions 8.3 and 8.4 of [Gen19b] in

the affirmative. The core idea behind both proofs is the same: when Γ is not minsquare, the

electrification EpΓq sits between the syllable metric SpΓq and the subgraph metric CpΓq, that

is, we obtain EpΓq from SpΓq by adding edges and then obtain CpΓq from EpΓq by adding

more edges. This means large distances in CpΓq, which we can detect with Theorem 4.2.10,

will persist in EpΓq. We start with a lemma that we use in both classifications to reduce to

the case where Γ does not split as a join.

Lemma 4.3.9. If Γ splits as a join and contains a proper minsquare subgraph, then Γ splits

as a join Γ “ Γ1 ‹Γ2 where Γ1 contains every minsquare subgraph of Γ and Γ2 is a complete

graph. In this case, EpΓq is the 1–skeleton of EpΓ1q ˆ EpΓ2q.

Proof. Suppose Γ contains a proper minsquare subgraph Λ and splits as a join Γ “ Ω1 ‹Ω2.

We first show Γ splits as a (possibly different) join Γ1 ‹Γ2, where Γ1 contains the minsquare

subgraph Λ. If Λ is a subgraph of either Ω1 or Ω2 we are done. Otherwise, Λ contains vertices

of both Ω1 and Ω2. By minimality of Λ, there must exist a square of Λ containing vertices

of both Ω1 and Ω2. Moreover, since Ω1 and Ω2 form a join, this square must arise in the

form of two pairs of disjoint vertices vi, wi P V pΩiq, i “ 1, 2. Then any vertex v of Ω1 r Λ

must be connected to every vertex w of Λ X Ω1, else v, w, v2, w2 form an induced square,

contradicting square-completeness of Λ. Similarly, any vertex of Ω2 r Λ must be connected

to every vertex of Λ X Ω2. This then gives a decomposition of Γ as a join of the minsquare

subgraph Λ and the graph Γ r Λ.
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We have shown that Γ splits as a join Γ1 ‹ Γ2 with Λ Ď Γ1. We now show that Γ2 must

be a complete graph. Since Λ is minsquare, there exists an induced square S in Λ Ď Γ1.

Let v1, w1 be two disjoint vertices of S, and suppose there exists a pair of disjoint vertices

v2, w2 in Γ2. Since Γ is a join of Γ1 and Γ2 and Λ Ď Γ1, the vertices v1, w1, v2, w2, define an

induced square that shares two opposite vertices with Λ, but is not contained in Λ. This

would contradict square-completeness of Λ. Therefore, Γ2 must be complete.

Finally we show that every other minsquare subgraph of Γ must also be contained in

Γ1. Let Ω Ď Γ be minsquare. If four vertices v1, v2, v3, v4 of Ω form an induced square of

Γ, then each vi must be contained in Γ1, since any vi that Γ2 contains must be connected

to all vj in Γ1, but Γ2 cannot contain a pair of disjoint vertices since it is complete. Thus

the minimality of Ω implies Ω must be contained in Γ1 (otherwise ΩXΓ1 would be a proper

square-complete subgraph of Ω).

Since Γ splits as a join Γ1 ‹ Γ2, it follows that SpΓq is the 1–skeleton of SpΓ1q ˆ SpΓ2q

and since the only minsquare subgraphs of Γ are the minsquare subgraphs of Γ1, EpΓq is the

1–skeleton of EpΓ1q ˆ EpΓ2q by construction.

We now show that EpΓq is bounded only in the obvious cases.

Theorem 4.3.10. The electrification EpΓq is bounded if and only if Γ is either minsquare,

complete, or splits as a join of a minsquare subgraph and a complete graph.

Proof. We first show that if Γ is minsquare, complete, or splits as the join of a minsquare

subgraph and a complete graph then the electrification is bounded. If Γ is minsquare, then

EpΓq has diameter 1 by definition. Let x, y be vertices of EpΓq, so that x´1y P GΓ. If Γ

is a complete graph on n vertices, then all vertex groups of Γ commute, so we can write

x´1y “ s1 . . . sn where supppsiq “ vi P V pΓq and vi ‰ vj for all i ‰ j. Thus dEpx, yq ď n,

hence EpΓq is bounded. If Γ splits as a join of a minsquare subgraph Γ1 and a complete graph

Γ2 on n vertices, then GΓ – xΓ1y ˆ xΓ2y and so we can write x´1y “ g1g2 where gi P xΓiy.

Therefore dEpx, yq ď n` 1, hence EpΓq is bounded.
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We now assume EpΓq is bounded and prove this implies Γ is either complete, minsquare,

or splits as a join of a minsquare subgraph and a complete graph. The proof will proceed

by induction on the number of vertices of Γ. The base case is immediate as Γ is complete

and EpΓq has diameter 1 when Γ is a single vertex. Assume the conclusion holds whenever

the defining graph has at most n ´ 1 vertices. Let GΓ be a graph product of groups where

Γ contains n ě 2 vertices.

Claim 4.3.11. If EpΓq is bounded and Γ is neither complete nor minsquare, then Γ must

split as a join and must contain a proper minsquare subgraph.

Proof. Suppose Γ does not split as a join. By Theorem 4.2.10, CpΓq is therefore unbounded.

Since Γ is not minsquare, EpΓq is CpΓq with some edges removed, so if CpΓq has infinite

diameter then so does EpΓq. That is, if Γ is not minsquare and does not split as a join then

EpΓq is unbounded, contradicting our assumption.

Now suppose Γ does not contain any proper minsquare subgraphs. Then EpΓq is simply

GΓ with the syllable metric. Since Γ is not complete, there exist two disjoint vertices v, w P

V pΓq. Therefore dEpe, pgvgwq
mq “ 2m for any gv P Gv r teu and gw P Gw r teu, hence EpΓq

is unbounded, a contradiction.

Assume that Γ is neither complete nor minsquare, so that Γ must contain a strict min-

square subgraph Λ and splits as a join by Claim 4.3.11. By Lemma 4.3.9, Γ must split as a

join of Γ1 and Γ2 where Γ2 is complete and EpΓq is the 1–skeleton of EpΓ1q ˆ EpΓ2q. Thus,

EpΓq having bounded diameter implies EpΓ1q must also have bounded diameter. Since Γ1

contains at most n´1 vertices, the induction hypothesis then implies Γ1 is either minsquare,

complete, or splits as a join of a minsquare subgraph and a complete graph. Since Λ Ď Γ1

contains a square, Γ1 cannot be complete. Thus, Γ1 is either minsquare or a join of Λ with

a complete graph Ω. Hence, Γ either splits as a join of the minsquare subgraph Γ1 and

the complete graph Γ2, or as a join of the minsquare subgraph Λ and the complete graph

Ω ‹ Γ2.
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Finally, we show that EpΓq being a quasi-line coincides with GΓ being virtually cyclic.

The key step of the proof is to produce two elements ofGΓ that act as independent loxodromic

elements on CpΓq. This creates more than two directions to escape to infinity in CpΓq, which

then gives more than two direction to escape to infinity in EpΓq.

Theorem 4.3.12. Let GΓ be a graph product of finite groups. The electrification EpΓq is a

quasi-line if and only if GΓ is virtually cyclic.

Proof. A graph product of finite groups GΓ is virtually cyclic if and only if either Γ is a pair

of disjoint vertices each with vertex group Z2 or Γ splits as a join Γ1 ‹ Γ2, where Γ1 is a pair

of disjoint vertices each with vertex group Z2 and Γ2 is a complete graph (this follows from

[BPR19, Lemma 3.1]). Thus, if GΓ is virtually cyclic, then EpΓq “ SpΓq is a quasi-line by

construction.

Let us now assume GΓ is not virtually cyclic. If Γ is either minsquare, complete, or

the join of a minsquare graph and a complete graph, then EpΓq has bounded diameter by

Theorem 4.3.10 and is therefore not a quasi-line. Let us therefore assume that Γ is not

minsquare, not complete, and does not split as a join of a minsquare graph and a complete

graph.

First assume Γ does not split as a join at all. Since the action of GΓ on CpΓq by left

multiplication is acylindrical (Corollary 4.2.24), Theorem 2.3.2 says GΓ must satisfy exactly

one of the following: GΓ has bounded orbits in CpΓq, GΓ is virtually cyclic, or GΓ contains

two elements that act loxodromically and independently on CpΓq. Since Γ does not split

as a join, the proof of Theorem 4.2.10 implies that GΓ does not have bounded orbits in

CpΓq. Further, GΓ is not virtually cyclic by assumption. Thus, there exist g, h P GΓ such

that n ÞÑ πΓpg
nq and n ÞÑ πΓph

nq are bi-infinite quasi-geodesics in CpΓq whose images,

πΓpxgyq and πΓpxhyq, have infinite Hausdorff distance from each other. Now, since Γ is not

minsquare, CpΓq is obtained from EpΓq by adding edges and therefore dΓpx, yq ď dEpx, yq

for all x, y P GΓ. Hence, the subsets xgy and xhy in EpΓq are also the images of bi-infinite
142



quasi-geodesics that have infinite Hausdorff distance from each other. This implies EpΓq is

not a quasi-line, as any two bi-infinite quasi-geodesics in a quasi-line have finite Hausdorff

distance.

Now assume Γ splits as a join. If Γ contains no minsquare subgraph, then EpΓq “ SpΓq.

Since the vertex groups are all finite, SpΓq is quasi-isometric to the word metric on GΓ and

hence SpΓq “ EpΓq is not a quasi-line, because we assumed GΓ is not virtually cyclic. Thus

we can assume Γ contains a minsquare subgraph Λ. By applying Lemma 4.3.9 iteratively,

we have that Γ splits as a join Γ “ Γ1 ‹ Γ2 such that:

• Γ1 either does not split as a join or is minsquare;

• Γ2 is a complete graph;

• EpΓq is the 1–skeleton of EpΓ1q ˆ EpΓ2q.

Recall that we are assuming Γ does not split as a join of a minsquare graph and a complete

graph, hence Γ1 cannot be minsquare and thus must not split as a join by the first item

above. Further, xΓ1y is not virtually cyclic since it is a finite index subgroup of GΓ, which

is not virtually cyclic. Thus, we can apply the previous case to conclude that EpΓ1q is not a

quasi-line and hence EpΓq is not a quasi-line.
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Chapter 5

Non-positive curvature in graph braid

groups

In this chapter we will develop an explicit HHG structure for graph braid groups by using

the cubical structure described in Section 2.5. We shall then use this HHG structure to char-

acterise when a graph braid group is hyperbolic (Theorem 5.2.1) or acylindrically hyperbolic

(Theorem 5.2.4), as well as conjecturing and partially proving a characterisation of relative

hyperbolicity and thickness (Conjecture 5.2.6 and Theorem 5.2.7).

Throughout this chapter we shall take Γ to be a finite, connected graph and consider the

graph braid group BnpΓq for n P N. The case where Γ is disconnected may be treated by

applying Lemma 2.5.2 and using Behrstock–Hagen–Sisto’s construction of HHG structures

on products of HHGs [BHS19, Section 8.3]. This then reduces our analysis to the connected

case.

Convention 5.0.1. In order to avoid confusion between edges of the graph Γ and edges of

the cube complex UCnpΓq when discussing the structure of a graph braid group BnpΓq, we

shall adopt the convention of denoting edges of Γ by e and edges of UCnpΓq by E. Moreover,

e will denote a closed edge of Γ, unless otherwise specified.
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5.1 The hierarchically hyperbolic structure on a graph

braid group

Recall that in Section 2.7.4 we showed a graph braid group BnpΓq has the structure of a hier-

archically hyperbolic group by virtue of its cubical structure (Corollary 2.7.25). In particular,

by sufficiently subdividing edges of Γ, we obtain a new graph Γ1 such that BnpΓq is isomor-

phic to the fundamental group of the unordered combinatorial configuration space UCnpΓ1q

(Theorem 2.5.5), and moreover UCnpΓ1q is a compact special cube complex (Corollary 2.5.7).

Since BnpΓq is isomorphic to BnpΓ
1q, we may drop the Γ1 notation entirely and simply

work under the assumption that Γ satisfies the conditions of Theorem 2.5.5. We shall adopt

this convention for the remainder of the chapter. Note that in particular, Γ can be assumed

to be a simplicial graph.

Hierarchical hyperbolicity of BnpΓq is obtained via its action on the universal cover X

of UCnpΓq, which is a CAT(0) cube complex. Since UCnpΓq is a special cube complex with

finitely many hyperplanes, it follows that X has a factor system that is invariant under the

action of π1pUCnpΓqq – BnpΓq, by Theorem 2.7.23. We can then apply the construction in

Section 2.7.4 to obtain an explicit HHG structure for BnpΓq.

5.1.1 The cubical structure

Recall that UCnpΓq is a compact cube complex, as described in Section 2.5. Each vertex of

the cube complex is a configuration of the n particles on the vertices of the graph Γ. Two

vertices of UCnpΓq are connected by an edge if one configuration can be obtained from the

other by moving a particle along an edge of Γ to a vacant neighbouring vertex. Two adjacent

edges of UCnpΓq span a square if the corresponding moves can be performed independently

of each other.

More concretely, we have the following construction, as described by Genevois [Gen19a].
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(See Figure 5.1 for an example.)

• The vertices of UCnpΓq are the subsets S of V pΓq with cardinality |S| “ n.

• Two vertices S and S 1 of UCnpΓq are connected by an edge if their symmetric difference

S4S 1 is a pair of adjacent vertices of Γ. We therefore label each edge E of UCnpΓq

with a closed edge e of Γ. Note that SXS 1 is a subset of V pΓr eq of cardinality n´ 1;

that is, S X S 1 is a vertex of UCn´1pΓ r eq. Here, Γ r e denotes the induced subgraph

of Γ spanned by the vertices V pΓqr V peq.

• A collection of m edges of UCnpΓq with a common endpoint span an m–cube if their

labels are pairwise disjoint.

Γ UC2pΓq

T2
1

2 3 4 5

6

1
1

2

2

3

3

4

4

5

5

6

6

Figure 5.1: An example of an unordered combinatorial configuration space. The vertices of
Γ are labelled to more easily see the construction of the cube complex. One can see that
UC2pΓq » T2 _ S1 _ S1, thus B2pΓq – Z2 ˚ F2. Note that the torus arises as the product of
the two 3–cycles in Γ.

Remark 5.1.1. We make heavy use of the above description of UCnpΓq in that which

follows. It is important to keep in mind that when we refer to a vertex S of UCnpΓq, we are

considering S to be a subset of V pΓq of cardinality n.

Genevois uses the above description of UCnpΓq to give an important characterisation of

the hyperplanes of UCnpΓq.
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Lemma 5.1.2 (Hyperplane labelling; [Gen19a, Lemma 3.6]). Let E1 and E2 be two edges

of UCnpΓq and denote the endpoints of Ei by Si, S1i for i “ 1, 2. The edges E1 and E2 are

dual to the same hyperplane if and only if they are labelled by the same closed edge e of Γ

and S1 X S
1
1, S2 X S

1
2 are in the same connected component Ke of UCn´1pΓ r eq.

Remark 5.1.3 (Labelling hyperplanes and embedding combinatorial hyperplanes).

(1) Lemma 5.1.2 tells us that hyperplanes H of UCnpΓq can be consistently and uniquely

labelled by pairs pe,Keq, where e is a (closed) edge of Γ and Ke is a connected component

of UCn´1pΓreq. Let E 1 be an edge of UCnpΓq. Then E 1 is an edge of some combinatorial

hyperplane H 1 associated to H if and only if there exists some edge E dual to H such

that E and E 1 span a square. Thus, the labels of E and E 1 are disjoint closed edges of

Γ; that is, the edges of H 1 are labelled by edges of Γ r e.

(2) Crossing a hyperplane corresponds to moving a particle along the associated edge e of Γ,

and travelling along a combinatorial hyperplane from S1 to S2 corresponds to rearranging

the remaining n´ 1 particles from the configuration S1XS
1
1 to the configuration S2XS

1
2

without using the edge e. It therefore follows that Ke Ď UCn´1pΓreq has two canonical

isometric embeddings in UCnpΓq, as the two combinatorial hyperplanes. More generally,

intersections of combinatorial hyperplanes are isometric to connected components of

complexes UCkpΛq, where k ă n and Λ is obtained from Γ by removing a collection of

disjoint closed edges.

5.1.2 The HHG structure

The goal of this section is to describe the HHG structure on a graph braid group BnpΓq

afforded by Corollary 2.7.25 in terms of the graph Γ. This will enable us to characterise

hyperbolicity, acylindrical hyperbolicity, relative hyperbolicity, and thickness in terms of Γ.

To this end, we study a natural collection of subgroups of BnpΓq that we call the graphical
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subgroups, constructed as follows. Again, it is important to note that in what follows, vertices

of UCnpΓq are considered as subsets of V pΓq of cardinality n.

Definition 5.1.4 (Graphical subgroup). Let Γ be a finite connected graph, let Λ Ď Γ be a

subgraph with no isolated vertices, and choose a base point T P UCnpΓqp0q with |T XΛ| “ k.

Then the connected componentK of UCkpΛq containing S “ TXΛ is embedded isometrically

as a subcomplex of UCnpΓq by fixing all particles in T X pΓ r Λq and restricting the motion

of the remaining k particles to Λ. Furthermore, by [HW08, Lemma 2.11] this embedding is

π1–injective, thus induces an embedding of BkpΛ, Sq as a subgroup of BnpΓq. We call this a

graphical subgroup and denote it xΛ, k, Sy.

Remark 5.1.5. We may define an equivalence relation „ on the vertices of UCkpΛq by

writing S „ S 1 if S and S 1 are in the same connected component of UCkpΛq. Note that

xΛ, k, Sy and xΛ, k, S 1y define the same graphical subgroup if and only if S „ S 1. We may

therefore change the base point S to another S 1 in the same „–equivalence class if convenient,

without affecting the graphical subgroup. We take advantage of this fact frequently.

Remark 5.1.6. Let X be the universal cover of UCnpΓq and let xΛ, k, Sy be a graphical

subgroup of BnpΓq. Embed the connected componentK of UCkpΛq containing S into UCnpΓq

as in Definition 5.1.4, then consider its universal cover as a subcomplex rK of X. Then rK is

quasi-isometric to xΛ, k, Sy via the orbit map, by the Milnor–Švarc lemma.

The above remark gives us a correspondence between cosets of graphical subgroups and

subcomplexes of the universal cover of UCnpΓq. In order to define our HHG structure for

BnpΓq, we will need to develop a version of parallelism for our graphical subgroups.

Definition 5.1.7. (Parallelism) Let gxΛ, k, Sy and hxΩ, l, T y be cosets of graphical subgroups

of BnpΓq. We say gxΛ, k, Sy is parallel to hxΩ, l, T y if Λ “ Ω, k “ l, S and T are in the

same connected component of UCkpΛq, and g´1h is in a graphical subgroup xΠ, n, S 1y, where

Π “ Λ Y pΓ r Λq and S 1 X Λ “ S. This defines an equivalence relation on the collection of
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graphical subgroups of BnpΓq. We call the equivalence classes with respect to this relation

the parallelism classes of cosets of graphical subgroups.

Remark 5.1.8. Note that:

(1) Each graphical subgroup xΠ, n, S 1y as above splits as a product

xΠ, n, S 1y – xΛ, k, Sy ˆ xΓ r Λ, n´ k, S 1 X pΓ r Λqy

by Lemma 2.5.2. Indeed, these are the maximal product subgroups with xΛ, k, Sy as a

factor.

(2) A priori, Γ r Λ may contain isolated vertices, and thus xΓ r Λ, n ´ k, S 1y is not well-

defined as a graphical subgroup. However, we may always remove these isolated vertices

from Γ r Λ to obtain a graph pΓ r Λq1 which defines a genuine graphical subgroup

xpΓ r Λq1,m, S 1 X pΓ r Λq1y, where m “ |S 1 X pΓ r Λq1|. Moreover, the connected

component of UCmppΓ r Λq1q containing S 1 X pΓ r Λq1 is isometric to the connected

component of UCn´kpΓ r Λq containing S 1, justifying this abuse of notation.

As each graphical subgroup xΛ, k, Sy is isomorphic to the graph braid group BkpΛ, Sq,

they also admit the following useful classification of diameter due to Genevois.

Lemma 5.1.9 (Diameter of graphical subgroups; [Gen19a, Lemma 4.3]). Let Γ be a finite

connected graph and let n P N. Let xΛ, k, Sy be a graphical subgroup of BnpΓq. Then xΛ, k, Sy

has infinite diameter if and only if one of the following holds; otherwise, xΛ, k, Sy is trivial.

(1) k “ 1 and the connected component of Λ containing S has a cycle subgraph.

(2) k ě 2 and either Λ has a connected component whose intersection with S has cardinality

at least 1 and which contains a cycle subgraph, or Λ has a connected component whose

intersection with S has cardinality at least 2 and which contains a star subgraph.
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We are now ready to define our HHG structure.

Theorem 5.1.10 (HHG structure of a graph braid group). Let Γ be a finite connected graph.

The graph braid group BnpΓq has an HHG structure S such that:

(1) (Index set.) The index set S consists of exactly one coset of a graphical subgroup

gxΛ, k, Sy from each parallelism class. Without loss of generality, we may take g “ e

where possible.

(2) (Nesting.) Given gxΛ, k, Sy, hxΩ, l, T y P S, we have gxΛ, k, Sy Ď hxΩ, l, T y if Λ Ď Ω,

k ď l, S and T X Λ are in the same component of UCkpΛq, and gxΛ, k, Sy is parallel to

hxΛ, k, Sy.

(3) (Orthogonality.) Given gxΛ, k, Sy, hxΩ, l, T y P S, we have gxΛ, k, SyKhxΩ, l, T y if

Λ X Ω “ H, k ` l ď n, and there exists a P BnpΓq such that gxΛ, k, Sy is parallel to

axΛ, k, Sy and hxΩ, l, T y is parallel to axΩ, l, T y.

Proof. Let H “ tpe,Keq | e P EpΓq, Ke P π0pUCn´1pΓ r eqqu. Remark 5.1.3(1) tells us that

H is in one-to-one correspondence with the collection of hyperplanes of UCnpΓq. Let Ξ be

the crossing graph of UCnpΓq, so that its vertices are in one-to-one correspondence with

elements of H, and let R be the collection of all subgraphs of Ξ.

Take Ω P R, so that we have Ωp0q Ď H. Given two edges E,E 1 of UCnpΓq, write E „Ω E
1

if there is a sequence of consecutive edges E “ E1, E2, . . . , E` “ E 1 of UCnpΓq such that for

each i, pei, Keiq P Ωp0q, where ei is the label of Ei and Kei is the connected component of

UCn´1pΓ r eiq containing the intersection Si X S 1i of the endpoints of Ei. In other words,

E „Ω E 1 if there is an edge path γ in UCnpΓqp1q from E to E 1 such that each edge of γ is

dual to some hyperplane of Ωp0q.

Let rEsΩ denote the equivalence class of E with respect to „Ω, and define UCΩ
n pΓq to be

the collection of induced subcomplexes of UCnpΓq whose 1–skeleton is rEsΩ for some edge

E. Let ΛΩ be the subgraph of Γ defined by taking the union of all edges e P EpΓq such
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that pe,Keq P Ωp0q for some Ke. Let E be an edge of UCnpΓq dual to some hyperplane

pe,Keq P Ωp0q, so that S X ΛΩ ‰ H and S X pΓ r eq P Ke for each endpoint S of E (and

moreover S XΛΩ does not depend on the choice of endpoint). Let k “ |S XΛΩ|. Then rEsΩ

is isometric to the 1–skeleton of the connected component of UCkpΛΩq containing S X ΛΩ.

Theorem 2.7.23 implies that the universal cover X of UCnpΓq has a factor system F

consisting of all lifts of subcomplexes in
Ť

ΩPR UC
Ω
n pΓq, where each of these subcomplexes is

isometric to a connected component of some UCkpΛΩq. Note that ΛΩ Ď Γ is expressible as

a union of closed edges by construction; that is, it contains no isolated vertices. Thus, each

F P F is quasi-isometric to a coset of a graphical subgroup xΛΩ, k, SXΛΩy via the orbit map,

by Remark 5.1.6. Moreover, since R consists of all subgraphs of Ξ, all graphical subgroups

can be expressed in this form.

Applying the construction in Section 2.7.4, we obtain an HHS structure on X with index

set T consisting of exactly one element of F from each parallelism class. Furthermore, this

induces an HHG structureS on π1pUCnpΓqq – BnpΓq by composing the projections in pX,Tq

with an orbit map, as explained in Remark 2.7.4. Remark 5.1.6 tells us that elements of

S are cosets of graphical subgroups. Moreover, the characterisation of parallelism given by

Lemma 2.4.7 combined with Remark 5.1.8(1) tells us that parallelism classes in F correspond

to parallelism classes of graphical subgroups. Thus, S consists of exactly one coset of a

graphical subgroup gxΛ, k, Sy from each parallelism class. Since there are no restrictions on

the elements of parallelism classes chosen for T, we are free to choose the elements of S so

that g “ e wherever possible. Thus, item (1) of our theorem is satisfied. Item (2) then follows

immediately from the definition of nesting for pX,Tq given in Section 2.7.4 by expressing

this definition in terms of the corresponding graphical subgroups. For item (3), note that

if gxΛ, k, Sy, hxΩ, l, T y P S, then Lemma 2.5.2 tells us that we have a graphical subgroup

xΛ Y Ω, k ` l, S Y T y – xΛ, k, Sy ˆ xΩ, l, T y if and only if Λ X Ω “ H and k ` l ď n. The

result then follows from the definition of orthogonality for pX,Tq given in Section 2.7.4.
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Remark 5.1.11 (The hyperbolic spaces associated to BnpΓq). As explained in the above

proof, our HHG structure S on BnpΓq “ π1pUCnpΓqq is induced by an HHS structure

T on the universal cover X of UCnpΓq, by composing the projections in T with an orbit

map. In particular, the hyperbolic spaces of S are hyperbolic spaces of T. That is, if

gxΛ, k, Sy P S is quasi-isometric to a subcomplex Y of X via the aforementioned orbit map,

then CpgxΛ, k, Syq “ CpY q, where CpY q is the factored contact graph of the cube complex

Y , defined in Section 2.7.4.

Note, if one graphical subgroup is nested in another, then it embeds as a subgroup.

Lemma 5.1.12. Let xΛ, k, Sy, xΩ, l, T y P S be graphical subgroups of BnpΓq and suppose

xΛ, k, Sy Ď xΩ, l, T y. Then xΛ, k, Sy ď xΩ, l, T y.

Proof. Let KΛ denote the connected component of UCkpΛq containing S, and let KΩ denote

the connected component of UClpΩq containing T . Then xΛ, k, Sy – π1pKΛq and xΩ, l, T y –

π1pKΩq. If xΛ, k, Sy Ď xΩ, l, T y, then Λ Ď Ω, k ď l, and S and T X Λ are in the same

connected component of UCkpΛq. Thus, we obtain an isometric embedding of KΛ into KΩ

by fixing the l ´ k particles in T X pΩ r Λq and restricting the motion of the remaining k

particles to Λ. Furthermore, by [HW08, Lemma 2.11] this embedding is π1–injective, thus

induces an embedding of xΛ, k, Sy as a subgroup of xΩ, l, T y.

By applying the following theorem of Behrstock–Hagen–Sisto, we may modify the HHS

structure pBnpΓq,Sq by removing any domains with finite diameter in BnpΓq. In the state-

ment of the theorem below, the space FU refers to one of the factors of the standard product

region associated to a domain U . We shall not go into any details about these; we refer the

reader to [BHS19, Section 5.2] for more information. The important point to note is that if

U P S is a graphical subgroup, then FU is quasi-isometric to U itself, by [BHS17b, Remark

13.5].
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Theorem 5.1.13 ([BHS17a, Proposition 2.4]). Let pX,Sq be an HHS, and let U Ď S be

closed under nesting. Suppose there exists D ą 0 such that diampFUq ď D for each U P U.

Then pX,S r Uq is an HHS, where the associated Cp˚q, π˚, ρ˚˚,Ď,K,& are the same as in

the original structure.

Corollary 5.1.14. Let U Ď S be the collection of domains gxΛ, k, Sy with finite diameter

in BnpΓq. Then pBnpΓq,Sr Uq is an HHS.

Proof. Let gxΛ, k, Sy P U and suppose hxΩ, l, T y Ď gxΛ, k, Sy. By definition of nesting, we

have Ω Ď Λ, l ď k, and T and SXΩ are in the same connected component of UClpΩq. Thus,

xΩ, l, T y embeds as a subgroup of xΛ, k, Sy by Lemma 5.1.12. Since gxΛ, k, Sy has finite

diameter, it therefore follows that hxΩ, l, T y has finite diameter too, and so hxΩ, l, T y P U.

Thus, U is closed under nesting. Furthermore, the bound on the diameter of graphical

subgroups in U is uniform by Lemma 5.1.9 (in fact, it is 0). This in turn uniformly bounds

the diameter of the spaces FU for U P U, as FU is quasi-isometric to U by [BHS17b, Remark

13.5]. We can therefore apply Theorem 5.1.13 to conclude that pBnpΓq,SrUq is an HHS.

In Section 5.2.2 we shall take advantage of this result to assume that every domain

gxΛ, k, Sy P S has infinite diameter in BnpΓq.

5.2 Detecting other forms of hyperbolicity in a graph

braid group

In this section, we classify when a graph braid group is hyperbolic or acylindrically hyper-

bolic, and provide a conjectural classification of relative hyperbolicity and thickness. This

builds upon results of Genevois, who obtained a classification of hyperbolicity, acylindrical

hyperbolicity, and toral relative hyperbolicity [Gen19a]. In the hyperbolic case, we use the

bounded orthogonality criterion (Theorem 2.7.12) to recover a version of Genevois’ theorem.

153



In the acylindrically hyperbolic case, we use Behrstock–Hagen–Sisto’s criteria for acylindrical

hyperbolicity in HHGs (Theorem 2.7.13). In the relatively hyperbolic case, we adapt tech-

niques developed by Levcovitz in his classification of relative hyperbolicity and thickness for

right-angled Coxeter groups [Lev20]. In particular, we introduce a sequence of hypergraphs

which encode collections of mutually orthogonal domains arising in the HHG structure of

a graph braid group BnpΓq. By analysing connectedness properties of these hypergraphs

and applying Russell’s isolated orthogonality criterion (Theorem 2.7.15), we conjecture a

characterisation of when the graph braid group is relatively hyperbolic. By construction,

our hypergraphs show that any graph braid group which does not satisfy the isolated or-

thogonality criterion is in fact strongly thick, and moreover we obtain an upper bound on

the order of thickness.

5.2.1 Hyperbolicity and acylindrical hyperbolicity

The HHG structure pBnpΓq,Sq allows us to easily detect when the graph braid group is hy-

perbolic or acylindrically hyperbolic. Indeed, the bounded orthogonality criterion (Theorem

2.7.12) allows us to obtain a classification of hyperbolicity of graph braid groups, giving an

alternate proof of a theorem of Genevois.

Theorem 5.2.1 (Characterisation of hyperbolicity; [Gen19a, Theorem 4.1]). Let Γ be a

finite connected graph and let n P N. The graph braid group BnpΓq is hyperbolic if and only

if one of the following holds.

(1) n “ 1.

(2) n “ 2 and Γ does not contain two disjoint cycle subgraphs.

(3) n “ 3 and Γ does not contain two disjoint cycle subgraphs, nor does it contain a disjoint

star subgraph and cycle subgraph.

(4) n ě 4 and Γ does not contain two disjoint subgraphs, each of which is a star or a cycle.
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In order to prove this theorem, we modify the HHG structure on BnpΓq slightly by

choosing a smaller factor system for the universal cover X of UCnpΓq, obtained by closing

the set of subcomplexes parallel to combinatorial hyperplanes under large projections. Using

our characterisation of combinatorial hyperplanes (Remark 5.1.3), we see that this gives us

a smaller index set S1 Ď S for BnpΓq, consisting of cosets of graphical subgroups of the form

xΓr pe1Y ¨ ¨ ¨ Y emq, k, Sy for some (possible empty) set of disjoint closed edges e1, . . . , em of

Γ. Recall that Γre denotes the induced subgraph of Γ spanned by the vertices V pΓqrV peq.

Using this new HHG structure pBnpΓq,S
1q, we have the following result.

Lemma 5.2.2. Let xΛ, k, Sy P S1. The hyperbolic space CpxΛ, k, Syq is unbounded if and

only if Λ is connected and xΛ, k, Sy has infinite diameter.

Proof. Suppose xΛ, k, Sy has infinite diameter and suppose Λ is connected. We claim that

the universal cover Y of UCkpΛq does not split as a product of subcomplexes.

Claim 5.2.3. Suppose Λ is connected. Then the universal cover Y of UCkpΛq does not split

as a product of subcomplexes.

Proof of claim. Suppose Y splits as a direct product Y “ Y1 ˆ Y2. Recall that each edge

of UCkpΛq is labelled by a closed edge of Λ, two adjacent edges of UCkpΛq span a square

if and only if they are labelled by disjoint edges of Λ, and opposite edges of a square are

labelled by the same edge of Λ. Thus, we may also label edges of Y by closed edges of Λ by

projecting to UCkpΛq, and moreover if two edges of Y span a square then they are labelled

by disjoint edges of Λ. Furthermore, since every edge of Y “ Y1ˆ Y2 has the form E1ˆty2u

or ty1u ˆ E2 where Ei is an edge of Yi and yi is a vertex of Yi, the labelling of edges of

Y induces a labelling of edges of Yi for i “ 1, 2 (this induced labelling is well-defined since

opposite edges of a square in Y have the same labels). Let Λi be the subgraph of Λ spanned

by the edge labels of Yi, for i “ 1, 2. Then Λ1 Y Λ2 “ Λ. Moreover, every edge of Λ1 must

be disjoint from every edge of Λ2, since every edge of Y1 spans a square in Y with every
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edge of Y2. This contradicts connectedness of Λ. Thus, Y does not split as a product of

subcomplexes.

A result of Hagen now tells us that the contact graph C0pY q must be unbounded [Hag12,

Theorem 6.3.6]. (Note, we can ensure that Y is leafless by applying Caprace–Sageev’s pruning

procedure, which will not affect xΛ, k, Sy [CS11].) Furthermore, CpxΛ, k, Syq is the factored

contact graph CpY q by Remark 5.1.11, which is quasi-isometric to the contact graph C0pY q

by [BHS17b, Remark 8.18]. Thus, CpxΛ, k, Syq is unbounded.

Conversely, suppose either xΛ, k, Sy has finite diameter or Λ is disconnected. If xΛ, k, Sy

has finite diameter then it must be trivial by Lemma 5.1.9. Thus, the cube complex Y has

finitely many hyperplanes and hence CpY q “ CpxΛ, k, Syq is bounded. If Λ is disconnected

then Y splits as a product by Lemma 2.5.2. Thus, the factored contact graph CpY q “

CpxΛ, k, Syq is bounded by [Hag12, Theorem 6.2.3].

Proof of Theorem 5.2.1. We wish to use the bounded orthogonality criterion (Theorem 2.7.12)

on S1 to classify hyperbolicity of BnpΓq. Lemma 5.2.2 tells us that CpxΛ, k, Syq is un-

bounded if and only if xΛ, k, Sy P S1 is an infinite-diameter graphical subgroup of BnpΓq

with Λ connected. Moreover, there are finitely many subgraphs Λ Ď Γ, finitely many

k ď n, and finitely many base points S P UC
p0q
k pΛq, therefore the bounded hyperbolic

spaces can be bounded uniformly. The bounded orthogonality criterion therefore says that

BnpΓq is hyperbolic if and only if there do not exist two infinite-diameter graphical subgroups

xΛ1, k1, S1y, xΛ2, k2, S2y P S1 with Λ1, Λ2 connected, Λ1 X Λ2 “ H, and k1 ` k2 ď n. We

classify these by applying the characterisation of diameter of graphical subgroups (Lemma

5.1.9).

Lemma 5.1.9 tells us that if Λ is connected, then xΛ, k, Sy has infinite diameter if and

only if either k “ 1 and Λ contains a cycle subgraph, or k ě 2 and Λ contains a cycle or

star subgraph. Note that if there exist two disjoint cycle or star subgraphs Ω1,Ω2 of Γ, then

by subdividing edges of Γ sufficiently, we can always find two connected disjoint subgraphs
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Λ1,Λ2 of Γ of the form Γ r pe1 Y ¨ ¨ ¨ Y emq such that Ωi Ď Λi for i “ 1, 2. That is, we

can find xΛ1, k1, S1y, xΛ2, k2, S2y P S1 with Λi connected, disjoint, and Ωi Ď Λi for i “ 1, 2.

The desired characterisation of hyperbolicity of BnpΓq therefore follows from Lemma 5.1.9

by analysing when k1 ` k2 ď n.

The criteria for acylindrical hyperbolicity for HHGs (Theorem 2.7.13) allow us to recover

another theorem of Genevois regarding acylindrical hyperbolicity.

Theorem 5.2.4 ([Gen19a, Theorem 4.10]). Let Γ be a finite connected graph and let n P N.

The graph braid group BnpΓq is either cyclic or acylindrically hyperbolic.

Proof. Suppose BnpΓq is non-trivial; by Lemma 5.1.9 it must have infinite diameter. Let

pBnpΓq,S
1q be the HHG structure given above Lemma 5.2.2, and let X be the universal cover

of UCnpΓq. The Ď–maximal element S P S1 is the entire graph braid group S “ BnpΓq. By

Lemma 5.2.2, CpSq must be unbounded since Γ is connected and BnpΓq has infinite diameter.

Furthermore, as BnpΓq is torsion-free by [Abr00, Corollary 3.7], it is virtually cyclic if and

only if it is cyclic. The criteria for acylindrical hyperbolicity for HHGs (Theorem 2.7.13)

therefore imply that BnpΓq is either cyclic or acylindrically hyperbolic.

5.2.2 Relative hyperbolicity and thickness

We wish to classify when a graph braid group BnpΓq is relatively hyperbolic or thick. We

do this by introducing a sequence of hypergraphs Ok called the orthogonality graphs, which

encode collections of mutually orthogonal domains arising in the HHS structure of BnpΓq.

These mimic the hypergraphs employed by Levcovitz in characterising relative hyperbolicity

and thickness of right-angled Coxeter groups [Lev19, Lev20].

Note that we may assume that all graphical subgroups in S have infinite diameter, as

discussed at the end of Section 5.1 (see Corollary 5.1.14). The graphical subgroups given in

the definition below can therefore all be assumed to have infinite diameter.
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Definition 5.2.5 (Orthogonality graph, hypergraph index). Let Γ be a finite graph and

let n P N. The orthogonality graphs Oi “ OipΓ, nq of the graph braid group BnpΓq are

hypergraphs, defined inductively as follows.

(1) O0 is the hypergraph whose vertices are proper graphical subgroups xΛ, k, Sy P S, and

whose hyperedges are maximal collections txΛ1, k1, S1y, . . . , xΛm, km, Smyu of pairwise

orthogonal domains. Given a hyperedge E “ txΛ1, k1, S1y, . . . , xΛm, km, Smyu, let xEy be

the subgroup generated by xΛ1, k1, S1y, . . . , xΛm, km, Smy.

(2) Define an equivalence relation ”i on the set of hyperedges EpOiq by setting E ”i E 1 if

there exists a sequence E “ E1, . . . , Em “ E 1 of hyperedges in EpOiq such that for each

1 ď j ă m, there exists xΛ, k, Sy P S and xΩj, lj, Tjy P Ej, xΩj`1, lj`1, Tj`1y P Ej`1 with

xΛ, k, Sy Ď xΩj, lj, Tjy and xΛ, k, Sy Ď xΩj`1, lj`1, Tj`1y.

(3) For each i ě 0, define V pOi`1q “ V pO0q and define E Ď V pO0q to be a hyperedge of

Oi`1 if and only if E “ E1 Y ¨ ¨ ¨ Y Em for some maximal collection tE1, . . . , Emu of

”i–equivalent hyperedges of Oi. Let xEy be the subgroup generated by xE1y, . . . , xEmy.

We define the hypergraph index of BnpΓq to be the smallest integer i such that Oi contains

a hyperedge E with xEy “ BnpΓq. If no such i exists, then the we define the hypergraph

index to be 8.

Recall that the characterisation of diameter of graphical subgroups (Lemma 5.1.9) tells

us that a graphical subgroup xΛ, k, Sy has infinite diameter if and only if Λ contains a cycle

or star subgraph in one of its components and S has at least one particle in that component

(in the cycle case) or at least two particles in that component (in the star case). Since

we are considering all domains of S to have infinite diameter, one may therefore interpret

the hypergraph index as a measure of complexity of intersection patterns of cycle and star

subgraphs occurring in Γ. For example, if BnpΓq has hypergraph index 0, then there exists

a collection tΛ1, . . . ,Λmu of disjoint subgraphs of Γ such that each cycle or star subgraph of
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Γ is contained in some Λj. If BnpΓq has hypergraph index 1, then there exists a collection

tΛ1, . . . ,Λmu of subgraphs of Γ such that: each cycle or star subgraph of Γ is contained in

some Λj; for each j there is a collection of disjoint subgraphs of Λj containing all cycle and

star subgraphs of Λj; and for any j ‰ j1 there exists a sequence Λj “ Λj1 , . . . ,Λjr “ Λj1 such

that Λji X Λji`1
contains a cycle or star subgraph for each i. One must also be careful to

keep track of the number of particles in each subgraph.

We wish to classify relative hyperbolicity and thickness of BnpΓq in terms of this complex-

ity. We claim that if the hypergraph index of BnpΓq is k ă 8, then BnpΓq is strongly thick

of order k, and if the hypergraph index is 8, then BnpΓq is relatively hyperbolic. To prove

the latter, we claim that if the hypergraph index is 8, then there exists some i such that the

hyperedges E P EpOiq isolate orthogonality of S in the sense of Definition 2.7.14. However,

a priori, the subgroups xEy may not themselves be graphical subgroups, and thus may not

be domains in S. We conjecture that the subgroups xEy are indeed graphical subgroups.

Conjecture 5.2.6. Let Γ be a finite connected graph and let n P N. For each i ě 0 and each

hyperedge E P EpOiq, the subgroup xEy of BnpΓq is a graphical subgroup. Furthermore, if

E “ txΛ1, k1, S1y, . . . , xΛm, km, Smyu, then xΛj, kj, Sjy Ď xEy for each 1 ď j ď m.

Suppose E P EpOiq has vertex set txΛ1, k1, S1y, . . . , xΛm, km, Smyu. The naive approach to

this conjecture would be to show that xEy is a graphical subgroup of the form x
Ť

j Λj, k, Sy for

some k ě maxtk1, . . . , kmu and some initial configuration S such that SXΛj is equivalent to

Sj in the sense of Remark 5.1.5 for all j. The latter two conditions ensure that xΛj, kj, Sjy Ď

x
Ť

j Λj, k, Sy for all j. However, we already see that this fails for hyperedges of O0. Indeed,

suppose Γ contains m disjoint cycles Λ1, . . . ,Λm, where m ą n ě 2. Then the graphical

subgroups xΛj, 1, Sjy (where Sj is any vertex of Λj) are pairwise orthogonal and thus are

contained in a common hyperedge E P EpO0q. Suppose xEy is of the form x
Ť

j Λj, k, Sy

described above. Since we only have n ă m particles in BnpΓq, there must be some 1 ď N ď

m such that the initial configuration S does not have a particle in ΛN . But then SXΛN “ H,
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contradicting our assumption that S X ΛN is equivalent to SN . In particular, Lemma 2.5.2

implies that x
Ť

j Λj, k, Sy – x
ŤN´1
j“1 Λj Y

Ťm
j“N`1 Λj, k, Sy. However, xΛN , 1, SNy is not a

subgroup of this, and therefore xEy cannot have this form.

In order to solve this problem, one may try to define a subgraph Λ of Γ by ‘connecting up’

the subgraphs Λj so that particles may move freely between them, reducing the number of

particles required for the graphical subgroup xΛ, k, Sy to contain all subgroups xΛj, kj, Sjy.

Note that since Γ is connected, we can always connect two subgraphs Λj with a path in

Γ. We claim that xEy is a graphical subgroup of the form xΛ, k, Sy, where Λ is obtained by

‘connecting up’ some of the subgraphs Λj in a minimal way, k ě maxtk1, . . . , kmu, and SXΛj

is equivalent to Sj in the sense of Remark 5.1.5 for all j. Again, the latter two conditions

ensure that xΛj, kj, Sjy Ď xΛ, k, Sy for all j.

Assuming Conjecture 5.2.6 is true, we are able to prove our classification theorem.

Theorem 5.2.7. Let Γ be a finite graph and let n ě 1, k ě 0 be integers. Suppose Conjecture

5.2.6 is true.

(1) If BnpΓq has hypergraph index k, then BnpΓq is strongly thick of order at most k. In

particular, BnpΓq is not relatively hyperbolic.

(2) If BnpΓq has hypergraph index 8, then BnpΓq is relatively hyperbolic.

Proof. Suppose Γ is disconnected. Then Lemma 2.5.2 tell us that BnpΓ, Sq splits as a direct

product

BnpΓ, Sq – Bn1pΛ1q ˆ ¨ ¨ ¨ ˆBndpΛdq,

where Λ1, . . . ,Λd are the connected components of Γ and ni “ |S X Λi|. Furthermore, by

Lemma 5.1.9 BnipΛiq is either infinite or trivial for each i. If there exist i ‰ j such that

BnipΛiq and BnjpΛjq have infinite diameter, then there exists E P EpO0q with xEy “ BnpΓq;

take E to be the collection of graphical subgroups given by those BnipΛiq with infinite

diameter. Thus, BnpΓq has hypergraph index 0. Moreover, BnpΓq splits as a product with
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infinite factors and is therefore strongly algebraically thick of order 0. On the other hand, if

there exists precisely one 1 ď i ď d such that BnipΛiq has infinite diameter, then BnpΓ, Sq –

BnipΛiq and so the proof reduces to the connected case. If BnipΛiq is trivial for all i, then

BnpΓ, Sq is trivial. We may therefore assume henceforth that Γ is connected.

Proof of (1). Suppose BnpΓq has hypergraph index k. Then there exists a hyperedge Emax P

EpOkq such that xEmaxy “ BnpΓq. Let 0 ď i ď k. We prove by induction on i that for each

E P EpOiq, the subgroup xEy is strongly algebraically thick of order at most i. In particular,

this implies that BnpΓq is strongly algebraically thick of order at most k.

In the base case of E P EpO0q, we have E “ txΛ1, k1, S1y, . . . , xΛm, km, Smyu for some

maximal collection of pairwise orthogonal domains in S, which are assumed to have infinite

diameter by Corollary 5.1.14. Moreover, xEy is the subgroup of BnpΓq generated by the

graphical subgroups xΛj, kj, Sjy. By definition of orthogonality, ΛjXΛr “ H and kj`kr ď n

for all j ‰ r. Since Γ is connected, there exists some Λr and some connected subgraph Ω Ď Γ

such that Λr X Ω “ H and Λj Ď Ω for all j ‰ r. Let l “ maxj‰rtkju and let T be any

configuration of l particles in Ω. Then we have xΛj, kj, Sjy Ď xΩ, l, T y for all j ‰ r, and

hence xΛj, kj, Sjy ď xΩ, l, T y for all j ‰ r by Lemma 5.1.12. Moreover, since kr ` l ď n,

we have a graphical subgroup xΛr Y Ω, kr ` l, Sr Y T y which splits as the direct product

xΛr, kr, Sry ˆ xΩ, l, T y. We therefore have xEy ď xΛr, kr, Sry ˆ xΩ, l, T y, so xEy splits as a

direct product with infinite factors, and hence is strongly algebraically thick of order 0.

Now let E P EpOiq for i ą 0, and suppose that for all E 1 P EpOi´1q, the subgroup xE 1y is

strongly algebraically thick of order i´ 1. By definition of EpOiq, there is a finite collection

of ”i´1–equivalent hyperedges tEαuαPI Ď EpOi´1q such that the subgroups xEαy generate

xEy. These subgroups therefore satisfy the coarse covering condition in the definition of

strong algebraic thickness (Definition 2.2.7), and are themselves strongly algebraically thick

of order i´ 1 by the inductive hypothesis. Furthermore, each subgroup xEαy is quasi-convex

in the sense of Definition 2.1.4. Indeed, each xEαy is a graphical subgroup by Conjecture
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5.2.6, and thus is a domain in the HHS structure S. That is, xEαy is quasi-isometric to an

element F of a factor system for the universal cover X of UCnpΓq, via the orbit map. Since

elements of factor systems are convex subcomplexes, it follows that xEαy is quasi-convex.

Now consider two subgroups xEαy and xEα1y for α, α1 P I. Since Eα ”i´1 Eα1 , item

(2) of the definition of the orthogonality graph Oi´1 tells us there exists a sequence Eα “

E1, . . . , Em “ Eα1 of hyperedges in EpOi´1q such that for each 1 ď j ă m, there exists

xΛ, r, Sy P S and xΩj, lj, Tjy P Ej, xΩj`1, lj`1, Tj`1y P Ej`1 with xΛ, r, Sy Ď xΩj, lj, Tjy and

xΛ, r, Sy Ď xΩj`1, lj`1, Tj`1y. By Lemma 5.1.12, we therefore have xΛ, r, Sy ď xΩj, lj, Tjy ď

xEjy and xΛ, r, Sy ď xΩj`1, lj`1, Tj`1y ď xEj`1y for each j. Since we are working under the

assumption that all graphical subgroups in S have infinite diameter (see Corollary 5.1.14),

this means xEjy X xEj`1y has infinite diameter for each j. Thus, the thick chaining con-

dition in the definition of strong algebraic thickness is satisfied, and hence xEy is strongly

algebraically thick of order at most i.

We conclude that BnpΓq “ xEmaxy is strongly algebraically thick of order at most k, and

hence BnpΓq is strongly thick of order at most k by [BDM09, Proposition 7.6]. In particular,

[BDM09, Corollary 7.9] tells us BnpΓq is not relatively hyperbolic.

Proof of (2). Suppose BnpΓq has hypergraph index 8. We wish to show that S satisfies

the isolated orthogonality conditions (Definition 2.7.14), implying relative hyperbolicity of

BnpΓq. In particular, we claim that there exists some i ě 0 such that the collection

Ii “ txEy P S |E P EpOiqu

satisfies the isolated orthogonality conditions.

Every pair of orthogonal domains of S is contained in some hyperedge E P EpO0q by

definition, thus Conjecture 5.2.6 implies every pair of orthogonal domains is nested into some

domain xEy for E P EpO0q. Since each hyperedge of Oi´1 is contained in a hyperedge of Oi
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for each i ě 1 by Definition 5.2.5(3), it follows that every pair of orthogonal domains of S

is nested into some domain xEy for E P EpOiq for each i. Thus, Ii satisfies condition (1) of

isolated orthogonality for all i.

Suppose E1 ıi E2 for all pairs of hyperedges E1, E2 P EpOiq. Then it follows from

Definition 5.2.5(2) that no domain of S is nested into two domains of Ii. Thus, Ii also

satisfies condition (2) of isolated orthogonality. On the other hand, if there exist non-trivial

collections of ”i–equivalent hyperedges of Oi, then there exists a hyperedge of Oi`1 which

strictly contains some hyperedge of Oi. Note that each Oi has the same finite number

of vertices: V pOiq consists of all proper infinite-diameter graphical subgroups of the form

xΛ, k, Sy, for which there are finitely many choices of subgraphs Λ Ď Γ, integers 1 ď k ď n,

and base points S P UCkpΛqp0q. It therefore follows by induction that either there exists

some i such that Ii satisfies the isolated orthogonality conditions or there exists i such that

Oi has a hyperedge E with E “ V pOiq, and hence xEy “ BnpΓq. Since the hypergraph index

of BnpΓq is 8, the former must be true.

This concludes the proof of Theorem 5.2.7.

As an immediate corollary, we have that graph braid groups form another example of a

class of HHGs which satisfy the dichotomy between thickness and relative hyperbolicity.

Corollary 5.2.8. Let Γ be a finite graph and suppose Conjecture 5.2.6 is true. The graph

braid group BnpΓq is strongly thick if and only if it is not relatively hyperbolic.

We also conjecture that a stronger version of Theorem 5.2.7 is true, analogous to Lev-

covitz’s characterisation of thickness in right-angled Coxeter groups [Lev20, Theorem A],

which is stated in Section 2.4.2 as Theorem 2.4.26. Levcovitz obtains a lower bound on the

order of strong thickness by studying the divergence of right-angled Coxeter groups and using

Behrstock–Druţu’s relationship between divergence and strong thickness (see Theorem 2.2.9

or [BD14, Corollary 4.17]). In particular, Levcovitz makes use of disc diagram techniques in
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order to construct geodesics with polynomial divergence of degree k` 1 in right-angled Cox-

eter groups with hypergraph index k. We conjecture that similar disc diagram techniques

may be developed for the universal cover of the cube complex UCnpΓq, giving the following

result.

Conjecture 5.2.9. Let Γ be a finite connected graph and let n ě 1, k ě 0 be integers.

• If BnpΓq has hypergraph index k, then BnpΓq is strongly thick of order k and has

polynomial divergence of degree k ` 1.

• If Γ has hypergraph index 8, then BnpΓq is relatively hyperbolic. Moreover, BnpΓq

has exponential divergence if it is one-ended, and infinite divergence otherwise.
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