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Introduction

Geometric group theory does what it says on the tin: it seeks to use the tools of geometry to understand
the algebraic structure of groups. The link between algebra and geometry is underscored by this quote
from Sophie Germain, one of the great mathematicians of the late 18th and early 19th centuries.

“L’algèbre n’est qu’une géométrie écrite, la géométrie n’est qu’une algèbre figurée”

(“Algebra is but written geometry, geometry is but drawn algebra”)

The central idea of geometric group theory is as follows: build/find an object on which a group acts, and
its geometry will (hopefully!) tell you something about the group.

Plan

A rough outline of this half of the course:

1. Group presentations: how to think about groups in terms of generators and relations

2. Cayley graphs: how to make a graph from a group

3. Quasi-isometries: how to use a Cayley graph to describe a group/get new invariants

4. Geodesics and actions: how a nice action of a group on a space with points connected by nice
curves can tell us about the group

Admin

• Lectures: 7 for each half

– Mondays, 11:00 - 12:00, Room 3.21 (Berry), Physics Building

– Wednesdays, 09:00 - 10:00, Room SM4, Ada Lovelace Building

– Fridays, 16:00 - 17:00, Room G.09, Fry Building

• Problems classes: 2 for each half - Fridays of Weeks 2 and 3 for this half

• Homework: two assignments, four questions each

• Exam: 90 minutes total (so about 45 minutes per half) in January

• Contact info:

– Name: Sam Streeter

– Office hour: Friday, 15:00 - 16:00, Office 2.11, Fry Building

– Email: sam.streeter@bristol.ac.uk

– Website: https://sites.google.com/view/samstreeter/home

References

1. A course on geometric group theory, Brian Bowditch
https://www.math.ucdavis.edu/~kapovich/280-2009/bhb-ggtcourse.pdf

2. Geometric group theory, an introduction, Clara Löh
https://www.math.ucdavis.edu/~kapovich/280-2009/bhb-ggtcourse.pdf

Source for title page graphic.
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Chapter 1

Group presentations

The goal of this chapter is to become familiar with thinking about groups as being produced by a set of
elements called “generators” which satisfy some “relations” amongst themselves. A way of describing a
group like this is called a presentation of the group.

We will start by talking about generating sets. We will then talk about free groups, which are in
some sense the largest group you can make with a set of generators. We will then talk about what it
means to impose some relations on the generating set.

1.1 Generating sets

Let G be a group, and let A ⊂ G be a subset. Suppose we want to add elements to A to make it into a
subgroup. How can we do that? One trivial way is to add every element of G \A. However, perhaps we
don’t need to go that far. It’s more interesting if we look for the smallest possible subgroup containing
A. We will denote this subgroup (at least once we have proven that it exists) by 〈A〉. What does that
look like?

We certainly need to add the inverse of every element of A if it is not in A already, and we certainly
need to have all products of elements in A. We need the identity too, but we get that for free if we have
inverses and products, since for a ∈ A, we have aa−1 = 1G. Then our guess would be

{aε11 a
ε2
2 · · · aεnn : n ∈ N, ai ∈ A, εi ∈ {±1}}.

It is easy to check that this set is a subgroup of G, and by the discussion above, it is the smallest
one containing A, since any subgroup of G containing A also has to contain it. So we have explicitly
constructed 〈A〉.

There is another way of thinking about 〈A〉: it is the intersection of all subgroups containing A.
Further, we can characterise it uniquely as the subgroup H ≤ G for which the following properties hold:

1. A ⊂ H.

2. If H ′ ≤ G and A ⊂ H ′, then H ⊂ H ′.

Sometimes the two obvious subgroups containing A coincide. That is, if you start out with the
elements in A and allow yourself to take inverses and form products, then you end up generating the
whole group G, hence the following definition.

Definition 1.1. A group G is generated by a subset A ⊂ G if G = 〈A〉. We call A a generating set for
G. We say that G is finitely generated if it has a finite generating set.

We usually write 〈a1, . . . , an〉 for 〈{a1, . . . , an}〉.

Example 1.2. Generating sets:

1. Any group is generated by itself, and any finite group is finitely generated by itself.

2. The group Z2 (under addition) is generated by {(1, 0), (0, 1)}: we have (a, b) = a(1, 0) + b(0, 1).

3. Note that the size of a generating set may vary: Z2 is also generated by {(2, 0), (0, 3), (1, 1)}.
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4. Many matrix groups over Z are finitely generated, e.g. GLn(Z) and SLn(Z). However, it is in many
cases difficult to find an explicit set of generators.

5. Q is not finitely generated.

6. Any finitely generated group is countable as a set, hence uncountable groups are not finitely
generated–in particular, R and C (as additive groups).

Although generating sets for a group may have different cardinalities, there is always a smallest such
size for any given group.

Definition 1.3. The rank of a group G, sometimes denoted by rankG, is the smallest cardinality of a
generating set for G.

This is not to be confused with the order of G, which is the cardinality of G as a set. It’s fair to say
that these two quantities are rarely equal, as the following exercise shows.

Exercise 1.4. Show that |G| = rankG if and only if G is the unique one-element group.

While maximal rank for given order is somewhat dull, going the other way is more interesting.

Definition 1.5. A group G is cyclic if G = 〈a〉 for some a ∈ G, i.e. if it is generated by a single element.

Example 1.6. Cyclic groups:

1. The group Z is cyclic, generated by 1. Any quotient of a cyclic group is cyclic; in particular, Z/nZ
(n ∈ N) is cyclic. In fact, these are, up to isomorphism, all of the cyclic groups!

2. The group Z/2Z× Z/2Z is the smallest non-cyclic group.

3. Any group of prime order is cyclic. (Apply Lagrange’s theorem to the subgroup generated by a
non-identity element.) However, the converse is obviously not true: Z/4Z is cyclic, for instance.

Definition 1.7. The (isomorphism class of) the group Zn is the free abelian group of rank n.

Warning 1.8. Free abelian groups are not free (except for rank 1).

We will soon meet free groups. The use of “free” in both cases basically means “as few relations as
possible”, where relations mean some identity of different products in the group, e.g. g1g

2
2 = g−1

1 . So a
free abelian group G has as few relations as possible, subject to the fact that it is abelian and so must
satisfy the relations gh = hg for all g, h ∈ G.

Symmetry is a nice thing. If you agree, then you will be pleased to hear that we can always turn a
generating set into a symmetric one as follows.

Suppose we have a generating set A for G, so G = 〈A〉. We can produce the set of inverses of elements
of A, namely

A−1 = {a−1 : a ∈ A}.

We say that A is symmetric if A = A−1.
Note that A ∪A−1 is symmetric, and G = 〈A ∪A−1〉.
Unfortunately, we can’t have everything we want; minimality is also nice, and A ∪ A−1 is almost

never a minimal generating set.
If A is symmetric, then every element of 〈A〉 is of the form a1a2 . . . an, ai ∈ A (not necessarily

distinct), n ∈ N. We call this a word of length n in the alphabet A (with 1G being the empty word/word
of length zero).

1.2 Free groups

As alluded to earlier, free groups should have as few relations as possible. There are obvious inevitable
relations, namely gg−1 = 1G for any element g ∈ G. The idea is that we will ask only for these relations
(and relations that follow because of them, e.g. h1gg

−1h2 = h1h2). We will formalise this in the following
way.

Definition 1.9. Let S be a subset of a group F . We say that F is freely generated by S if for every
group G and map of sets φ : S → G, there exists a unique homomorphism φ̂ : F → G, i.e. φ̂(x) = φ(x)
for all x ∈ S. We say that F is a free group if it is freely generated by some subset S ⊂ F .
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The above definition is pictorially summarised by the commutative diagram below.

S F

G

φ
∃! φ̂

That this formally encapsulates there being no “unnecessary” relations is far from clear at first sight!
Before we think about what it means a little more, let us first convince ourselves that it at least makes
some sense, in that if S freely generates F , it certainly generates F .

Lemma 1.10. If a group F is freely generated by a subset S ⊂ F , then F = 〈S〉.

Proof. Suppose that F is freely generated by S. To make use of the above definition, we want to start
with a map of sets from S to some group G. We want to involve 〈S〉, so let’s choose the map φ : S → 〈S〉
given by inclusion. By hypothesis, this extends to a homomorphism φ̂ : F → 〈S〉. We can compose this

with the inclusion homomorphism ι : 〈S〉 ↪→ F to obtain a homomorphism ι ◦ φ̂ : F → F . Now, note

that both ι ◦ φ̂ and idF are homomorphisms extending the inclusion S ↪→ F ; by hypothesis, they must
be equal, but then φ̂(f) = f for all f ∈ F , i.e. 〈S〉 = F .

Let’s now try to make some sense of why this definition means that S generates F with as few
relations as possible. First, suppose that S is a generating set for F , i.e. F = 〈S〉, and suppose that we

have a map of sets φ : S → G, where G is a group. If φ extends to a homomorphism φ̂ : F → G, it is
clear what this homomorphism must be. Indeed, given an arbitrary element f ∈ F , we know that we
can write f = sr11 s

r2
2 · · · srnn for some n ∈ N, ri ∈ Z and si ∈ S. Then we have

φ̂(f) = φ̂(s1)
r1 φ̂(s2)

r2 · · · φ̂(sn)
rn = φ(s1)

r1φ(s2)
r2 · · ·φ(sn)

rn ,

where the first equality holds since φ̂ is a homomorphism, and the second equality holds since φ̂ = φ
on S. We deduce that, if such an extension exists, it is unique. The idea is that S freely generating F
means that no pesky relations will crop up which means that this extension is not well-defined. Let’s see
how this could happen in an example.

Example 1.11. Recall that Z2 = 〈(1, 0), (0, 1)〉. Consider the map φ : {(1, 0), (0, 1)} → S3 given by

φ(1, 0) = (123), φ(0, 1) = (12). If this extends to a homomorphism φ̂ : Z2 → S3, then we must have
(13) = (123)(12) = (12)(123) = (23) (can you see why?), which is false.

We could have used any non-abelian group instead of S3 above. The key was that the relation
(1, 0) + (0, 1) = (0, 1) + (1, 0) spoiled the party, so that the images of the two elements had to commute,
so we had only to choose two non-commuting elements to map to.

We defined free abelian groups of a given rank up to isomorphism and so spoke of the free abelian
group of rank n. We can also speak of the free group of rank n, as the following lemma tells us.

Lemma 1.12. Let F be freely generated by S and let F ′ be freely generated by S′. Suppose that S is in
bijection with S′, i.e. |S| = |S′|. Then F = F ′.

Proof. Once again, we look for obvious maps to apply the definition to. Since S and S′ are in bijection,
there exist maps φ : S → S′ and ψ : S′ → S such that ψ ◦φ = idS and φ ◦ψ = idS′ . By composing these
maps with the obvious inclusions, we can think of them as maps φ : S → F ′ and ψ : S′ → F .

By hypothesis, we can uniquely extend φ and ψ to homomorphisms φ̂ : F → F ′ and ψ̂ : F ′ → F .
Consider the composition ψ̂ ◦ φ̂ : F → F . Note that, for s ∈ S, we have

ψ̂ ◦ φ̂(s) = ψ̂(φ(s)) = ψ(φ(s)) = s,

hence this homomorphism extends the inclusion S ↪→ F . Since such an extension is unique and is also
given by idF , we deduce that ψ̂ ◦ φ̂ = idF . Similarly/by symmetry, we obtain φ̂ ◦ ψ̂ = idF ′ . Then
F ∼= F ′.

Definition 1.13. We denote the (isomorphism class of the) group freely generated by {1, . . . , n} by Fn.

As for free abelian groups, isomorphic free groups have the same rank. In particular, if Fm ∼= Fn,
then m = n. This will become clear once we reveal the link between Fn and Zn later on.
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1.2.1 Explicit construction

So far, we’ve assumed that free groups exist and derived some interesting results about them. Now we’d
better check that they actually exist! The best way is to construct them explicitly.

Let’s talk about words. Begin with a set A, which we call our alphabet (with its members our letters).
A word of length n in A, as you might guess, is an ordered sequence of n elements of A, which is the
same thing as a map {1, . . . , n} → A. Denoting by ai the image of i ∈ {1, . . . , n}, we write the resulting
word as a1a2 . . . an. We denote by W (A) the set of all words in the alphabet A. No surprises so far!

Note that there is an obvious binary operation on W (A): concatenation. That is, we can form a
new word from two old words by pushing them together, i.e. we take a1a2 . . . an · an+1an+2 . . . an+m =
a1a2 . . . anan+1an+2 . . . an+m. This is clearly associative, and the identity is the empty word as before.
This makes W (A) into a monoid (set with associative operation and identity element)–you don’t need
to worry about monoids, just be happy that we’re getting closer to groups!

What about inverses? Well, the obvious thing to do is to add them, and that is what we will do.
We are ready to construct the free group freely generated by a set S. Starting with our set S, let S be

another set in bijection with S; S will play the role of the set of inverses to elements of S, so we’ll write
its elements as s, s ∈ S to easily go to and fro. Then one bijection is simply s 7→ s. Set A : S ∪ S, and
form the set of words W (A). We will now introduce an equivalence relation on W (A). Since s is meant
to be the inverse of s, we will declare the words ussv, uv and ussv to be equivalent for all u, v ∈W (A),
s ∈ S. We will call uv a reduction of the words ussv and ussv. This will generate an equivalence relation
∼ on W (A), where two words are equivalent if and only if they have a common reduction. We claim
that F (S) ∼= W (A)/ ∼, where the group operation is given by concatenating representatives from each
equivalence class, i.e. [w] ∗ [w′] = [ww′].

Where it does not cause too much confusion, we will write w instead of [w] and a−1 instead of a.

Example 1.14. In F (a, b), we have the words a3, b2a−1 and aba3, and we have abaa−1b−1 = abb−1 = a.

Before we convince ourselves that we have succeeded in constructing a free group, we should check
that W (A)/ ∼ really is a group. To do that, we need to check that the group operation is well-defined
(i.e. independent of the representatives we choose to concatenate) and that there are an identity and
inverses (can you guess what these are?). Having done that, we are left to check freeness.

Exercise 1.15. Check that W (A)/ ∼ is a group.

Definition 1.16. A word w ∈W (A) is reduced if it admits no reduction.

Proposition 1.17. Given a word w ∈W (A), there exists a unique reduced word w′ such that w ∼ w′.

Existence is easy; keep reducing until you can’t anymore. Uniqueness is less clear; it is one of the
things that Cayley graphs will allow us to see.

Note 1.18. Free generating sets are not unique: Z is freely generated both by 1 and by −1.

1.3 Group presentations

Definition 1.19. Let G be a group, and let A ⊂ G. The normal closure 〈〈A〉〉 of A in G is the smallest
normal subgroup of G containing A.

1. Note that there is some ambiguity in notation here: 〈〈A〉〉 is not in general equal to 〈〈A〉〉 = 〈A〉, the
smallest subgroup containing 〈A〉. In general, we have only the inclusion 〈A〉 ⊂ 〈〈A〉〉 by minimality
of 〈A〉.

2. Note also that 〈〈A〉〉 admits a similar characterisation to that of 〈A〉:

(a) A ⊂ 〈〈A〉〉.
(b) 〈〈A〉〉CG.

(c) If A ⊂ H CG, then 〈〈A〉〉 ≤ H.

3. We may explicitly describe 〈〈A〉〉 as

〈〈A〉〉 = {ghg−1 : g ∈ G, h ∈ 〈A〉}.

We are simply turning 〈A〉 into a normal subgroup by adding all possible conjugations of one of its
elements by an element of G, and it is easily seen that this is a group.
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Example 1.20. If G is abelian, then for any A ⊂ G, we have 〈A〉 = 〈〈A〉〉.

Exercise 1.21. The centre Z(G) of a group G consists of all elements of G commuting with every other
element, i.e.

Z(G) = {z ∈ G : zg = gz for all g ∈ G}.
Prove that the centre Z(G) is a normal subgroup of G.

Definition 1.22. Let S be a set, and let R be a subset of the free group F (S). Define

〈S | R〉 := F (S)/〈〈R〉〉.

A presentation of a group G is an isomorphism of G with a group of the form 〈S | R〉. We call elements
of R relators or relations. We say that a presentation is finite if S and R are finite, and we say that G
is finitely presented if it admits a finite presentation.

The way you should read a presentation is as a recipe for constructing a group: on the left you
have your base ingredients, and on the right, you specify how they mix together (more specifically, what
combinations of generators give the identity). Alternatively, you could think of relators as rules for what
happens when you combine elements.

Example 1.23. 1. Note that 〈〈∅〉〉 = {1}, hence 〈S | ∅〉 ∼= F (S).

2. Z/nZ ∼= 〈a | an〉. We have one element that generates the whole group (concretely, 1), and the one
rule which determines the group is that n lots of this element equals the identity.

3. If we want to specify that two generators a and b commute with each other, we can put aba−1b−1

into our set of relators. In particular, you can check that Z/2Z × Z/2Z has presentation 〈a, b |
a2, b2, aba−1b−1〉.

Note 1.24 (Word problem). Note that R almost never consists of all products of elements which equal
the identity, but the ones that we start with imply others. For example, in Z/2Z × Z/2Z = 〈a, b |
a2, b2, aba−1b−1〉, we know that ab = ba, so a2b2 = a(ab)b = a(ba)b = (ab)

2
.

In particular, certain products in our generating set (words in the generators and their inverses, if
you like) will equal the identity but aren’t already in the relator set, and so you may ask: how can we
tell when a product equals 1? This is (one version of) the word problem: given an arbitrary word, can
we decide if it reduces to the identity? For many groups the answer is unknown, and understanding the
word problem plays a prominent role in group theory.

Note 1.25. Being finitely presented is strictly stronger than being finitely generated, but examples
illustrating this are a bit obscure, and this is not something that we’ll be overly worried about.

Definition 1.26 (Commutators). Let G be a group, and let x, y ∈ G. The commutator of x and y is
the element [x, y] = xyx−1y−1 ∈ G. The commutator subgroup of G, denoted by [G,G], is the group
generated by the set of all commutators, i.e.

[G,G] = 〈x, y : x, y ∈ G〉.

Since [G,G] is normal, we can form the quotient G/[G,G]. Note that this quotient group is abelian.
In fact, it is the canonical way of turning G into an abelian group, hence the following definition.

Definition 1.27. The group G/[G,G] is called the abelianisation of G.

Exercise 1.28. Fn/[Fn, Fn] ∼= Zn.

Having completed the above exercise, you can now see why Fm ∼= Fn implies that m = n.
The abelianisation of G is the minimal abelian group receiving a homomorphism from G in the fol-

lowing sense: if φ : G→ A is a homomorphism with A abelian, then there exists a unique homomorphism
ψ : G/[G,G]→ A through which φ factors, i.e. φ = ψ ◦ q, where q : G→ G/[G,G] is the quotient map.
That is, we have the following diagram:

G A

G/[G,G]

q

φ

∃!ψ
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Chapter 2

Cayley graphs

Now that we have familiarised ourselves with one way of thinking about and constructing groups, we
are ready to start constructing geometric objects from them. In this chapter, we will describe how to
construct a Cayley graph ∆(G,S) given a group G and subset S (generally a generating set). We will
then explain how to think of these graphs as metric spaces. By opening the door to metric geometry
in this way, we will see later on (in the next chapter) that different choices of generating set S preserve
the “large-scale geometry” of ∆(G,S), so that we geometric properties at this scale can be meaningfully
discussed independent of the choice of S, so that we can think of them as geometric properties of G itself.

2.1 Graphs

Before we talk about Cayley graphs, we’d better talk about graphs in general.

Definition 2.1. A directed graph K = (V,E) consists of the following data:

1. A set of vertices (or nodes) V = V (K)

2. A collection (not necessarily a set) of edges E = E(K) ⊂ V × V . We may call the vertices in the
pair defining an edge its endpoints.

An undirected graph is defined analogously, except that we replace V × V by Sym2(V ) = V × V/ ∼,
where ∼ is the equivalence relation defined by (x, y) ∼ (y, x). That is, edges in an undirected graph are
unordered pairs of vertices instead of ordered pairs.

We usually picture the vertices of our directed graph as points in some ambient space, often the
plane, and the edges as curves of arrows joining these points, so that the edge (u, v) is a curve joining
the points u and v, pointing from u to v. The picture of an undirected graph is then the same, but with
no arrows.

Example 2.2. One of the most well-studied families of graphs is the family of complete graphs Kn,
n ∈ N. The (undirected) graph Kn has n vertices and an edge connecting each pair of distinct vertices.

Exercise 2.3. Determine the number of edges in Kn.

Definition 2.4. We say that a graph is simple if any two vertices are connected by at most one edge;
in particular, a simple graph contains no loops (edges starting and ending at the same vertex).

If a graph is simple, then we can safely write {u, v} instead of (u, v) to denote an edge.
Now that we know/have recalled what graphs are, let’s describe some of their properties.

Definition 2.5. The degree (or valence) of a vertex is the number of edges incident upon it, i.e. including
it as one of their endpoints. A graph is locally finite is each vertex has finite degree. Given n ∈ N, a
graph is n-regular if each vertex has degree n. A graph is regular if it is n-regular for some n ∈ N.

Now for paths and the gang.
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Definition 2.6. A path is a sequence of edges such that every consecutive pair of edges share a vertex.
An arc is a path in which any vertex appears as a common endpoint at most once, i.e. a path which does
not cross itself (or an embedded path, if you like).

A cycle is a path such that the first and final edges share a vertex, i.e. a closed path. A circuit is
a cycle which does not cross itself at any intermediate step (meaning that the only vertex to which the
cycle returns is the first one).

Definition 2.7. A graph is connected if there is a path between any two vertices. A graph is a tree if
it contains no cycles.

Exercise 2.8. Prove that a graph is a tree if and only if there is at most one path between any pair of
vertices.

Example 2.9. Another family of graphs relevant to us is the family of n-regular trees Tn, n ∈ N≥2. The
graph Tn has infinitely many vertices, with each having degree n.

It goes without saying that graphs are a concept of fundamental importance in applied mathematics;
they can be used to represent and understand road networks, computer systems and even the human
brain. They are also widely studied in pure mathematics; graph theory is widely considered a branch of
combinatorics, and there is a panoply of beautiful and striking results dating from what many consider
to be the origin of the subject: Euler’s solution to the “Seven Bridges of Königsberg” problem.

The longstanding problem, solved negatively by Euler in 1736, was to find a walking route around
the city of Königsberg traversing each bridge exactly once. Unfortunately for Prussian pedestrians,
Euler showed that this is impossible. One of his key observations was that the walking you do between
bridges/on the same land mass is irrelevant, so that the problem is reduced to finding a circuit in a
certain graph on seven vertices which traversed every edge. Such circuits are called Eulerian circuits in
his honour. His solution was pleasingly simple: he observed that, for an Eulerian circuit to exist in a
graph, at most two vertices can have odd degree. Nice one, Euler!

Source

However, if you like bridges (and you know you do), you will be pleased to learn that such a feat on
foot is possible in other cities–including Bristol! If you have sturdy shoes and plenty of free time on your
hands, you can take in all 45 of Bristol’s bridges in a 45km walk. The solution is believed to be the first
published positive solution for any city, narrowly beating out New York. For more details and the route,
see here. The solution was found by former Bristol academic Thilo Gross, who is as fond of a punning
webpage title as he is of Eulerian circuits: https://reallygross.de/ops/bridgewalk.

2.2 Constructing Cayley graphs

Now that we’ve learned a bit/brushed up on graphs, we’re ready to make graphs from groups. Let’s go!

Definition 2.10. Let G be a group, and let S ⊂ G be a subset not containing 1. The Cayley graph of
G with respect to S is the directed graph ∆(G,S) with

• set of vertices V (∆) = {vg : g ∈ G};

• set of directed edges E(∆) = {{vg, vgs} : g ∈ G, s ∈ S}.

One can think of the vertex vg as being labelled by g, and the directed edge {vg, vgs} as being labelled
by s. In other words, the edges incident upon each vertex are indexed by the elements of S ∪ S−1–at
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least if S ∩ S−1 = ∅. When S ∩ S−1 6= ∅, the incident edges to a vertex are indexed by S ∪ S, where S
denotes a set of formal inverses for S as seen above. More specifically, the outgoing edges are indexed
by S, while the incoming edges are indexed by S.

Note 2.11. Note that ∆(G,S) is a 2|S|-regular graph. That is, every vertex has degree 2|S|.

Conventions differ on whether a Cayley graph is directed or undirected. The advantage of the directed
definition is that it is easier to make sense of what to do when S ∩ S−1 6= ∅. Note that, if s−1 ∈ S for
some s ∈ S, then we have two directed edges {vg, vgs} and {vgs, v(gs)s−1 = vg}, i.e. the vertices vg and
vgs are connected by two edges in opposing directions rather than just one edge (and the same for vg
and vgs−1 by symmetry). So the directedness is at least helpful for construction.

There are also differing conventions on whether to call the above graph a Cayley graph when S is not
a generating set for G. It is a legitimate definition of a graph either way, but the graph is more pleasant
when G = 〈S〉 as the following lemma shows.

Lemma 2.12. The subset S generates G iff ∆(G,S) is a connected graph.

Proof. Note that ∆ is connected if for any vertex vg, g ∈ G, there exists a path in the underlying
undirected graph between v1 and vg. Now note that paths between v1 and vg are in bijection with
representations of g as a word in the alphabet A = S ∪S, given by taking the product of the edge labels
of the path.

Definition 2.13. When S generates G, we call ∆(G,S) the Cayley graph of G with respect to S.

Example 2.14. Below are Cayley graphs of G = Z with different choices of generating set S.

Example 2.15. While the cardinality of the vertex set of a Cayley graph tells us the cardinality of the
underlying group, it does not uniquely determine the graph. Indeed, G = S3 and S = {(12), (123)})
gives the same graph as G = Z/6Z and S = {2, 3}.

Theorem 2.16. If S ⊂ G freely generates G, then ∆(G,S) is a tree. The converse holds if S∩S−1 = ∅.

Proof. Suppose that G ∼= F (S) but ∆ contains a circuit σ. Taking the (signed) product of the edge
labels along σ, we produce a word in S ∪ S equalling the identity. That this product equals the identity
in F (S) means that there exists a finite sequence of reduction steps taking this word to the empty word.

On the level of cycles, a reduction step (or its inverse) corresponds either to introducing or eliminating
a backtracking along an edge. Note that there are never two edges joining the same two vertices; this is
equivalent to there being no two-torsion elements in S ⊂ F (S), which follows easily from the definition
of a free generation. Thus we deduce that there exists a sequence of cycles σ0 = σ, σ1, . . . , σn = {1} such
that σi is related to σi+1 by introducing or eliminating a backtracking along an edge. Let O(σi) ⊂ E(∆)
denote the set of edges which σi travels along an odd number of times. Since eliminating a backtracking
preserves this set, we have O(σ0) = O(σn). Now note that O(σ0) = E(σ0) since σ0 is a circuit, while
O(σn) = ∅, hence σ0 = σn, the constant path based at {1}. We have deduced a contradiction, hence the
result follows.

For the converse, note that any element g ∈ G corresponds to a unique reduced word via the unique
path from v1 to vg with no backtracking, and this allows us to uniquely extend any map S → G to a
homomorphism F (S)→ G.

Note that G acts on itself by left multiplication. We can view this as an action of G on the vertices
of ∆(G,S). This extends to an action of G on the edges of ∆(G,S), hence to an action on the graph.

Indeed, if g, h ∈ G with h−1g ∈ S, then for any k ∈ G, we have (kh)
−1

(kg) = h−1k−1kg = h−1g ∈ S.
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2.3 Cayley graphs as metric spaces

Definition 2.17. Let K = (V,E) be a connected undirected graph. The associated metric on the vertex
set V is given by

dK(v, w) = min{n ∈ Z6=0 : v and w are connected by a path of length n}.

Formally, a graph consists of a set of vertices and a set of edges, both of which are in some sense
discrete. It is (hopefully) intuitively clear, however, that there is an underlying geometric object of a
more continuous flavour. When we draw a graph, in the plane say, we are really looking at a set of points
which includes not only the vertices at each end of an edge, but also points along the edge. We formalise
this as follows.

Definition 2.18. Let K = (V,E) be a connected directed graph. The (geometric) realisation of K is
the metric space

(
|K|, d|K|

)
defined by taking

|K| = E × [0, 1]/ ∼,

where ∼ is an equivalence relation defined by

((u, v), 1) ∼ ({v, w}, 0).

The metric d|K| is defined by extending the associated metric on V , i.e.

d|K|(((u, v), t), ((u′, v′), t′)) =

|t− t
′| if (u, v) = (u′, v′),

min

{
t+t′+dK(u,u′),t+(1−t′)+dK(u,v′),

(1−t)+t′+dK(v,u′),(1−t)+(1−t′)+dK(v,v′)

}
else.

This looks quite complicated, but it makes sense: if both points lie on the same edge, we take their usual
distance as points in the unit interval. Otherwise, a path between the points passes through one of the
two vertices of each of their “home” edges, and we consider all four possible ways of choosing one vertex
from each of the two edges and travelling between them.
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Chapter 3

Quasi-isometries

Now that we have established how to construct and think of Cayley graphs as metric spaces, we are
almost ready to demonstrate that different choices of S preserve the large-scale/“coarse” geometry of
the Cayley graph–but first, we of course need to make precise what we mean by the coarse geometry
of a metric space, which we will do by defining and studying quasi-isometries. This is a good choice of
name: as you will (hopefully!) recall, isometries are distance-preserving functions between metric spaces,
so they preserve their geometry perfectly. The idea behind the definition of quasi-isometries is that they
“almost preserve” distances, so that they roughly preserve the geometry (hence coarse is also a good
word to use).

3.1 Quasi-isometries

Definition 3.1. Let (M1, d1) and (M2, d2) be metric spaces, and let φ : M1 →M2 be a (not necessarily
continuous) map.

1. We say that φ is a quasi-isometric embedding if there exist constants A ≥ 1 and B ≥ 0 such that,
for all x, y ∈M1, we have

1

A
d1(x, y)−B ≤ d2(φ(x), φ(y)) ≤ Ad1(x, y) +B.

Occasionally it is desirable to specify parameters A and B such that φ satisfies the above condition,
in which case we refer to φ as an (A,B)-quasi-isometric embedding.

2. We say that φ is coarsely surjective if there exists a constant C > 0 such that, for all z ∈M2, there
exists w ∈ M1 such that d2(φ(w), z) ≤ C. Again, you could say that φ is C-coarsely surjective or
has C-dense image if you want to keep track of the parameter.

3. We say that φ is a quasi-isometry if it is a coarsely surjective quasi-isometric embedding. Once
more, you might like to specify parameters and so speak of an (A,B,C)-quasi-isometry.

Example 3.2. The map R → R, x 7→ ax + b is, no surprise, a quasi-isometry. Note that its obvious
parameters A,B as in the definition are not as you might expect; (A,B) = (a, 0) works.

Exercise 3.3. The diameter of a metric space (M,d) is diam(M) = supx,y∈M{d(x, y)} ∈ R∪ {∞}. Let
φ : M → N be a map of metric spaces. We say that M is bounded if it has finite diameter. Prove the
following facts:

1. If N is bounded, then φ is coarsely surjective.

2. If M and N are bounded, then φ is a quasi-isometric embedding.

Proposition 3.4 (Composition of quasi-isometries). Let (Mi, di), i = 1, 2, 3 be three metric spaces, and
let φ : M1 → M2 and ψ : M2 → M3 be quasi-isometries. Then the composition ψ ◦ φ : M1 → M3 is a
quasi-isometry.

12



Proof. By assumption, there exist constants Ai ≥ 1, Bi ≥ 0 and Ci > 0 for i = 1, 2 such that

1

A1
d1(x, y)−B1 ≤ d2(φ(x), φ(y)) ≤ A1d1(x, y) +B1 for all x, y ∈M1,

1

A2
d2(x, y)−B2 ≤ d3(ψ(x), ψ(y)) ≤ A2d2(x, y) +B2 for all x, y ∈M2,

B̃(z, C1) ∩ φ(M1) 6= ∅ for all z ∈M2,

B̃(z, C2) ∩ ψ(M2) 6= ∅ for all z ∈M3.

Let x, y ∈M1. We have

d3(ψ ◦ φ(x), ψ ◦ φ(y)) = d3(ψ(φ(x)), ψ(φ(y))) ≤ A2d2(φ(x), φ(y)) +B2

≤ A2(A1d1(x, y) +B1) +B2 = A2A1d1(x, y) +A2B1 +B2,

and similarly

d3(ψ ◦ φ(x), ψ ◦ φ(y)) = d3(ψ(φ(x)), ψ(φ(y))) ≥ 1

A2
d2(φ(x), φ(y))−B2

≥ 1

A2

(
1

A1
d1(x, y)−B1

)
−B2

≥ 1

A2A1
d1(x, y)− (A2B1 +B2),

using A2 ≥ 1 for the final inequality. Now for coarse surjectivity. We must find C > 0 such that
B̃(z, C) ∩ (ψ ◦ φ)(M1) 6= ∅ for all z ∈ M3. Given z ∈ M3, we know that there exists w ∈ M2 such that

ψ(w) ∈ B̃(z, C2). Similarly, we know that there exists v ∈ M1 such that φ(v) ∈ B̃(w,C1). A natural

candidate for an element of B̃(z, C) ∩ (ψ ◦ φ)(M1) is therefore ψ ◦ φ(v), and we will determine whether
making C sufficiently large makes this candidate successful. Note that

d3((ψ ◦ φ)(v), z) ≤ d3(ψ(φ(v)), ψ(w)) + d3(ψ(w), z) ≤ A2d2(φ(v), w) +B2 + C2 ≤ A2C1 +B2 + C2,

so we may take C = A2C1 +B2 + C2 (or larger).
Altogether, we have shown that the composition ψ ◦ φ is an (A3, B3, C3)-quasi-isometry, where

(A3, B3, C3) = (A2A1, A2B1 +B2, A2C1 +B2 + C2) = A2(A1, B1, C1) +B2(0, 1, 1) + C2(0, 0, 1).

Definition 3.5. Let f : X → Y be a map of metric spaces. We say that another map g : X → Y has
finite distance from f if there exists a constant c ∈ R>0 such that dY (f(x), g(x)) ≤ c for all x ∈ X.

For maps f, g : R → R, g having finite distance from f means that the graph of g lives in a tubular
neighbourhood of some fixed radius around the graph of f .

Example 3.6. The map f : R → R, f(x) = sin(x) has finite distance from idR, as does any bounded
function.

Definition 3.7. Let f : X → Y be a quasi-isometry. We say that a quasi-isometry g : Y → X is a
quasi-inverse of f if g ◦ f has finite distance from idX and f ◦ g has finite distance from idY .

Proposition 3.8 (Existence of quasi-inverses). Every quasi-isometry has a quasi-inverse.

Proof. Let f : X → Y be a quasi-isometry. We want to show that there exists a quasi-inverse g : Y → X.
Given y ∈ Y , we must therefore decide a suitable element of X for g to send y to. Now, f ◦ g has finite
distance from idY iff there exists a constant K > 0 such that dY (y, f(g(y))) ≤ K for all y ∈ Y . In
other words, f(g(y)) is in BK(y) ∩ f(X). This looks strikingly similar to the second condition in the
definition of quasi-isometry. Since f is coarsely surjective, we know that there exists a constant C > 0
(independent of y) such that BC(y) ∩ f(X) 6= ∅. Choose g(y) to be x for any f(x) in this non-empty
intersection. Then f ◦ g has finite distance from idY . It remains to show that g ◦ f has finite distance
from idX and that g is a quasi-isometry.

Exercise 3.9. Complete the last two steps of the above proof.
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Definition 3.10. Given a group G with generating set S, the word metric dS on G is defined by setting
dS(g, h) to be the minimum length of g−1h as a word in the alphabet S ∪ S−1.

Theorem 3.11. Let S and T be two finite generating sets for a group G. Then there exists an equivariant
isometry between ∆(G,S) and ∆(G,T ).

Proof. One may work directly with the geometric realisations of both Cayley graphs, but a cleaner proof
is achieved by first relating the Cayley graph ∆(G,S) to the metric space (G, dS) and then passing
between (G, dS) and (G, dT ).

First, consider the map ι :
(
∆S , d|∆S |

)
→ (G, dS) given by setting

ι(({vg, vh}, t)) =

{
g if t ≤ 1

2 ,

h if t > 1
2 .

That is, ι sends a point in the realisation to the element of G labelling the nearest vertex. We claim
that ι is a quasi-isometry. Indeed, it is easily seen that dS(ι(x), ι(y)) differs from d|∆S |(x, y) by at most
one, since the word metric on ∆ with respect to S coincides with the associated metric on the vertices
of ∆(G,S).

It remains to prove that (G, dS) is quasi-isometric to (G, dT ). Let us show that idG gives us a quasi-
isometry between these two metric spaces. Let g, h be two elements of G. Recall that dS(g, h) is defined
to be the minimum length of a word representing g−1h in the alphabet A = S ∪ S−1, and let w be a
word achieving this minimum length. Let S = {s1, . . . , sr}, and let li be the minimum length of a word
in the alphabet B = T ∪ T−1 representing si, and let wi be a word in B achieving this minimum length.
Set l = max{li}. By replacing si by wi in w, we obtain a word in B representing g−1h of length at most
ldS(g, h). In other words, we have proved that

dT (g, h) ≤ ldS(g, h).

By symmetry, we may also obtain a constant l′ such that

dS(g, h) ≤ l′dT (g, h).

Setting L = max{l, l′}, we deduce that idG is an (L, 0)-quasi-isometric embedding. Since idG is surjective,
it is coarsely surjective, and we are done.

The upshot is this: to make a geometric object out of our group, we allowed ourselves to add in
more data: that of a generating set. However, we showed that changing the generating set preserves the
large-scale geometry of our object (the Cayley graph). Then geometric properties of this graph which
are invariant under quasi-isometry can be justifiably thought of as geometric properties of our group.
We win!
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Chapter 4

Geodesics and actions

In this chapter we will introduce geodesics and spaces in which they are ubiquitous, in the sense that
any two points are connected by one. We like working with spaces with nice geometric properties (who
doesn’t?), and one nice property is that any two points are connected by some sort of curve, or path.
It is even nicer when such a path, viewed as a mapping of some closed interval into our metric space,
preserves the distances between points, at least up to some scalar. Such curves are called geodesics,
and we will be interested in working with geodesic spaces, in which any two points are connected by a
geodesic.

We will then look at group actions and discover how nice actions of groups on geodesic spaces can
tell us something about the algebraic structure of the group.

4.1 Paths and geodesics

Definition 4.1. A path in a metric space M is a continuous function γ : I → M , where I ⊂ R is a
closed interval. An arc is an embedded path, i.e. a path with γ an injective function.

Example 4.2. Some examples of paths.

1. γ : [−1, 1]→ R2, γ(t) =
(
t, t3

)
is the graph of y = x3 between the points (−1,−1) and (1, 1).

2. γ : [0, π] → R2, γ(t) = (2 + cos t, 3 + sin t) is the semicircular arc with centre (2, 3) joining the
points (3, 3) and (1, 3).

3. γ : [0, 2π]→ R3, γ(t) =
(
cos t, sin t, t

2π

)
is a spiral joining (1, 0, 0) to (1, 0, 1) around the unit-radius

cylinder with centre the z-axis.

Identifying a path with its image in M , it is easy to see that the name is justified; the image will be
a path (in the usual sense) between its endpoints; possibly a nasty path with lots of loops and vertices,
but a path nonetheless.

Now that we have a notion of path, it is natural to ask how long the path is. It is quite easy to
determine the distance between any two points on the path, and as with integration, we arrive at a
reasonable definition of length by partitioning our path up into discrete segments, taking the length of
those and effectively taking a limit.
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Definition 4.3. Given a path γ : I →M , the length of γ is

length(γ) = sup

{
n∑
i=1

d(γ(ti), γ(ti−1)) : a = t0 < t1 < · · · < tn−1 < tn = b

}
.

We say that γ is rectifiable if it has finite length.

Definition 4.4. Let (M,d) be a metric space, and let I ⊂ R be an interval. A geodesic of constant
speed λ ≥ 0 is a path γ : I →M such that d(γ(t), γ(u)) = λ|t− u| for all t, u ∈ I. A unit-speed geodesic
is a geodesic of constant speed 1.

Note that |t − u| is simply the distance between the points t, u ∈ I with respect to the Euclidean
metric (x, y) 7→ |x− y| on R, hence a unit-speed geodesic is a way of mapping an interval into a metric
space in a “distance-preserving” way.

Note 4.5. There is another, perhaps more common, description of geodesics: they are distance-minimising
paths. That the above definition captures the fact that the path is “as short as possible” among all paths
connecting the endpoints is admittedly not obvious. However, knowing this should allow you to guess
what the geodesics in a particular metric space ought to be, and you can then check to see if your
suspicion is correct.

Definition 4.6. A metric space (M,d) is a geodesic space (also called a length space) if any two points
are connected by a geodesic.

Example 4.7. Rn with the Euclidean metric is a length space; straight lines with a linear parametrisation
are geodesics.

Example 4.8. A topological space X (e.g. a metric space) is called path-connected if any two points
P,Q ∈ X can be connected by a path, i.e. if there exists a path γ : [a, b]→ X with γ(a) = P , γ(b) = Q.
Note that any length space has to be a path space. There is a weaker notion of connectedness, which
is slightly more involved but means what you think: the space X is made out of “one piece” rather
than disjoint pieces. As you might expect, any path-connected space is connected, so connectedness is
necessary in order to be a length space. In particular, any non-connected space is not a length space.

Definition 4.9. A metric space is proper if it is complete and locally compact.

Example 4.10. Rn with the Euclidean metric is proper. It is complete (every Cauchy sequence is
convergent), and local compactness can be seen via the Heine–Borel theorem, which says that the compact
subsets of Rn are exactly those which are closed and bounded; this includes closed balls, and every point
is contained in a closed ball.

Example 4.11. Q with the Euclidean metric is not proper as it is neither complete nor locally compact;
indeed, the completion of Q with respect to the Euclidean metric is R, and any neighbourhood contains
an irrational number.

Definition 4.12. Let M be a proper geodesic metric space, and let Q ⊂ M be a closed subset. We
define the geodesic metric dQ on Q by setting dQ(x, y) to be the minimum of the lengths of rectifiable
paths in M connecting x to y.

Exercise 4.13. Check that the geodesic metric really is a metric.

4.2 Actions

Definition 4.14. Let X be a set and let G be a group acting on X. Given x ∈ X, we define the orbit of
x to be the subset Gx = {gx : g ∈ G}, i.e. the set of all elements of X to which x can be sent by acting
on it via some g ∈ G. The stabiliser of x is Stab(x) = Gx = {g ∈ G : gx = x}, i.e. the set of g ∈ G which
send x to itself.

Example 4.15. Any group acts on itself by either left or right multiplication.

Example 4.16. Any group acts on itself by conjugation. The centre Z(G) of G, which is mentioned
in an earlier example and consists of all elements which commute with every other element, can be
described as the intersection Z(G) = ∩g∈GStab(g). The orbits of this action are the conjugacy classes
of G. Conjugacy classes play an important role in the study of non-abelian groups, e.g. the symmetric
group Sn.
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Definition 4.17. Let X be a proper geodesic space, let G be a group, and let G×X → X, (g, x) 7→ gx
be an action of G on X. We say that G acts by isometries on X if for each g ∈ G, the map X → X,
x 7→ gx is an isometry.

Exercise 4.18. Show that the special orthogonal group SO2(R) = {
(

cos θ sin θ
− sin θ cos θ

)
: θ ∈ R} acts by

isometries on R2 by matrix multiplication.

4.3 PDC actions

Let G be a group acting on a proper geodesic space X.

Definition 4.19. We say that the action of G on X is properly discontinuous (PD) if for all r ≥ 0 and
all x ∈ X, the set {g ∈ G : d(x, gx) ≤ r} is finite. That is, given a point x ∈ X and a radius r ≥ 0, there
are only finitely many g ∈ G which will send x to another point in B(x, r). We say that the action is
properly discontinuous and cocompact (PDC) if it is PD and the quotient X/G is compact.

According to Wikipedia, “cocompact” is sometimes jokingly written as “mpact”. Why is this such a
rib-tickler for algebraists? Because we often use “co-” to refer to some dual object, and taking the dual
of a dual often gives you back the thing that you started with, so that two co-s cancel out. Taking duals
often changes the direction of things (like morphisms, or objects in a statement); with that knowledge,
you are now sufficiently equipped to appreciate another comedic gem, courtesy of algebraic geometer
Ravi Vakil (Joke 1.4.5 in these notes):

Joke 4.20. A comathematician is a device for turning cotheorems into ffee.

Example 4.21. Any action by a finite group is trivially a PD action. Any PD action which is transitive
(meaning that one point can be sent to any other by acting by some group element) is trivially cocompact.

Example 4.22. The action of Z2 on R2 by addition (i.e. (a, b) ∗ (x, y) = (x+ a, y + b)) is PDC; proper
discontinuity is clear, and R2/Z2 is isomorphic to the torus T2 (to the uninitiated, a ring doughnut), as
can be seen by bringing any point into the square [0, 1]2 and considering the way in which edges of this
square identify/“glue”.

Theorem 4.23. If a group G has a PDC action on a proper geodesic space, then G is a finitely generated
group.

Proof. Suppose that G acts PDC on X. Fix an element x ∈ X. Since the action is cocompact, every
orbit is cobounded, i.e. there exists C > 0 such that Gx is C-dense. We construct a graph K = (V,E)
associated to this action by taking V = G and connecting g, h ∈ G iff d(gx, hx) ≤ 2C + 1.

Claim 1: K is locally finite. Note that d(gx, hx) = g
(
gx, hg−1(gx)

)
, so d(gx, hx) ≤ 2C + 1 iff

hg−1 ∈ {k ∈ G : d(gx, kgx) ≤ 2C + 1}, a finite set.
Claim 2: K is connected. We seek a path in the graph between any two vertices g and h. Such a

path corresponds to a sequence of group elements g0 = g, g1, . . . , gn = h so that d(gix, gi+1x) ≤ 2C + 1
for i = 1, . . . , n− 1. This sequence of associated points in X has the feature that two consecutive points
are “not too far apart”. Producing one such sequence between g0x = gx and gnx = hx is easy: since
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X is a geodesic space, we can simply take a geodesic between them and divide it into arbitrarily small
segments. We will combine this observation with the cocompactness of the action to produce the desired
path.

Let γ : [0, 1]→ X be a geodesic connecting gx and hx. Choose points P0 = gx, P1, . . . , Pn = hx ∈ X
along the image of γ such that d(Pi, Pi+1) ≤ 1. Next, choose gi ∈ G such that d(Pi, gix) ≤ C. By the
triangle rule, we have d(gix, gi+1x) ≤ d(gix, Pi) + d(Pi, Pi+1) + d(Pi+1, gi+1x) ≤ 2C + 1.

Claim 3: K is the Cayley graph of G with generating set S = {g ∈ G \ {1G} : d(x, gx) ≤ 2C+ 1}–at
least after gluing edges for 2-torsion elements.

Hopefully this is now at least believable.

Corollary 4.24 (Milnor–Švarc Lemma). If a group G has a PDC action on a proper geodesic space X,
then G ∼ X.

Proof. Let ∆ be the Cayley graph constructed in the previous proof, and let f : ∆ → X be the map
given by sending a vertex g to gx ∈ X and a directed edge (vg, vg′) linearly to a geodesic γ joining gx
and g′x. By choosing points Pi on γ as in the previous proof, we see that the length of the path that we
constructed between g and h is at most dX(f(g), f(h)) + 1, so d∆(g, h) ≤ dX(f(g), f(h)) + 1, provided
that we choose the Pi to be evenly spaced along γ. On the other hand, dX(f(g), f(h)) ≤ (2C + 1)d∆(g, h)
(as seen by following the “straight-line” path between the points gix in the previous proof), so f is a
quasi-isometric embedding. Since G = V (∆) and Gx = f(V (∆)) are cobounded (i.e. R-dense for some
R > 0) in ∆ and X respectively, we deduce that f is also coarsely surjective, hence a quasi-isometry.

Corollary 4.25. Let G be a finitely generated group and let H ≤ G be a subgroup of finite index. Then
H is finitely generated and G ∼ H.

Proof. The PDC action of G on its Cayley graph ∆ restricts to a PDC action of H on ∆.

4.4 Commensurability

Definition 4.26. Let G1 and G2 be two groups. We say that G1 and G2 are commensurable, denoted
by G1 ≈ G2, if there exist finite-index subgroups H1 ≤ G1 and H2 ≤ G2 such that H1

∼= H2.

Example 4.27. If G is a finite group and G′ is any (possibly infinite) group, then G ×G′ is commen-
surable with G′. For instance, Z× Z/3Z ≈ Z.

Proposition 4.28. If G1 and G2 are finitely generated groups, then G1 ≈ G2 implies G1 ∼ G2.

Proof. Suppose that G1 ≈ G2. Then there exist finite index subgroups H1 ≤ G1, H2 ≤ G2 such
that H1

∼= H2. We have seen above that Gi ∼ Hi, so it suffices to check that isomorphic groups are
quasi-isometric, which is easily seen.

Definition 4.29. Let P be a property of groups. We say that a group G is virtually P if it has a
finite-index subgroup H ≤ G such that H has property P.

Example 4.30. Any finite group is virtually abelian and virtually trivial.

4.5 Geometric properties

Definition 4.31. We say that a property P of groups is geometric if, given two quasi-isometric groups
G and G′, G has P iff G′ has P.

Example 4.32. Being finitely presented is a geometric property.

Example 4.33. Recall from earlier (Note 1.24) the word problem: given a finitely generated group G
and a word in the generators of some finite generating set, is there an algorithm to decide whether the
word is equivalent to the empty word? An equivalent question is of course: is there an algorithm to
decide when two words represent the same group element? For finitely presented groups, work of Alonso
and Shapiro shows that solubility of the word problem is geometric: that is, given two finitely presented
groups G and G′ such that G ∼ G′, the word problem is solvable for G iff it is solvable for G′. However,
the question of whether the word problem is geometric for finitely generated groups remains open.
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